Impact Factor 6.1

Journal of Cyber Security

ISSN:2096-1146

Scopus

DOI

Google Scholar

More Information

www.journalcybersecurity.com

Design of Tension and Compression member of Steel roof truss By IS:800-2007 Using Computer Program

Kalpak Vora #1

#1 Senior Lecturer, Department of Applied Mechanics, Government Polytechnic for Girls, Ahmedabad, Commissionerate of Technical Education, Gandhinagar.

Abstract: Today most of the calculations are done by using computer program/software. So, that the solution becomes more reliable and accurate. In the field of steel structure, it is very difficult to calculate axial tensile as well as compressive force in steel structure manually.

In this work, computer program is made in Microsoft Excel, so that the solution becomes more accurate and faster. Designer can select appropriate Angle section using this program.

Keywords: IS: 800 -2007 (GENERAL CONSTRUCTION IN STEEL – CODE OF PRACTICE)

I. INTRODUCTION

A steel structure is a combination of various tension and compression members. In every steel structure, when it is loaded by external forces, tension and compression forces are developed in internal members of whole structure. Design load is a combination of various loads acting on the structure such as Dead load, Live load, Wind loads etc. A tension member is a structural member subjected to two equal and opposite outward forces. They are found in bridge and roof trusses, towers, bracing systems, cables, and various other applications. A member which carries an axial compression is known as a compression member.

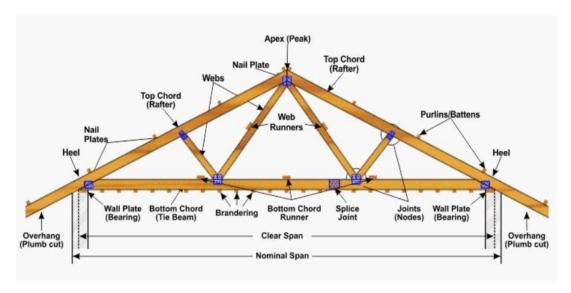


Figure 1. Typical Steel roof truss

Figure 1 shows typical steel roof truss showing all components. In this program, one can easily input the data for analysis of tension as well as compression members, and get final output in Microsoft excel.

II Important parameters of computer program

Physical properties of structural steel irrespective of its grade may be taken as: (Clause 2.2.4.1)

- Unit mass of steel, p = 7850 kg/m~
- Modulus of elasticity, $E = 2.0 \times 10^5 \text{ N/mm2}$ (MPa)
- Poisson ratio, p = 0.3
- Modulus of rigidity, $G = 0.769 \times 10^5 \text{ N/mm2}$ (MPa)
- Co-efficient of thermal expansion cx. = 12 x 10' / "c

III Computer Program Using IS: 800-2007

The following screenshots shows some important sheets of Design of tension and compression members

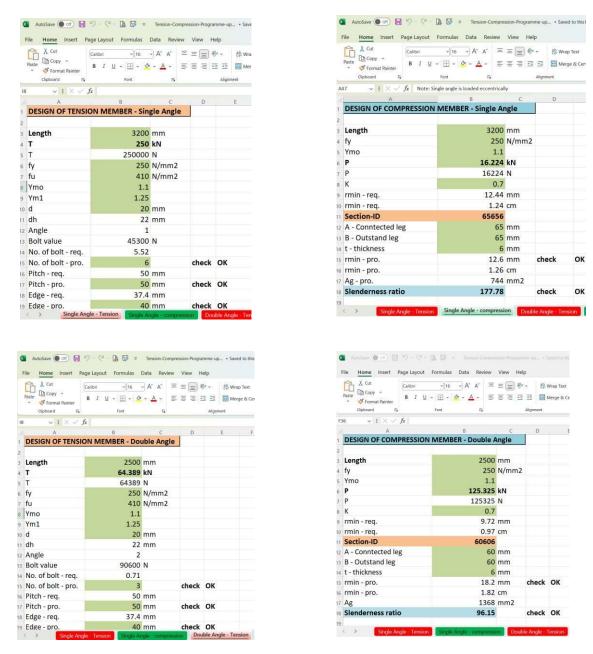


Figure 2. Screen shot of Design of Tension member and Compression member

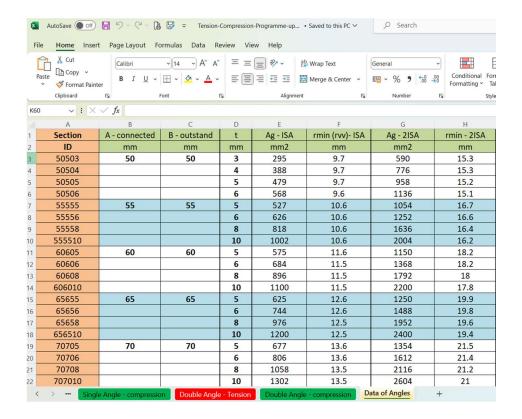


Figure 3. Section data for Tension and compression members

Input and output data for tension member (Single Angle section)

IV

DESIGN OF TENSION	MEMBER - Single	Angle		
Length	3200	mm		
T	250	kN		
T	250000	N		
fy	250	N/mm ²		
fu	410	N/mm ²		
Ymo	1.1			
Ym1	1.25			
d	20	mm		
dh	22	mm		
Angle	1			
Bolt value	45300	N		
No. of bolt - req.	5.52			
No. of bolt - pro.	6		check	OK
Pitch - req.	50	mm		
Pitch - pro.	50	mm	check	OK
Edge - req.	37.4	mm		
Edge - pro.	40	mm	check	OK
Ag - req.	1100	mm ²		
Section -ID	757510			

Page No: 3

A - connected leg	75	mm		
B - outstand leg	75	mm		
t - thickness	10	mm		
Ag - pro.	1402	mm ²	check	OK
rmin - req.	12.44	mm		
rmin - pro.	14.5	mm	check	OK
K	0.7			
Tdg	318.64	kN	check	OK
g	40	mm		
W	75	mm		
bs	105	mm		
Lc	250	mm		
Ago	700	mm ²		
Anc	480	mm ²		
Beta	1.254			
Beta-Lower range	0.7		check	OK
Beta-Upper range	1.443		check	OK
Tdn	341199.88	N		
Tdn	341.20	kN	check	OK
Avg	2900	mm ²		
Avn	1690	mm ²		
Atg	350	mm ²		
Atn	240	mm ²		
Tdb1	451385.48	N		
Tdb1	451.39	kN	check	OK
Tdb2	367587.02	N		
Tdb2	367.59	kN	check	OK
Td - strength	318.64	kN	check	OK
10 - suchgui	J10.0T	KIN	CHCCK	OK
Slenderness ratio	154.48		check	OK
Note: Single angle is leaded as	centrically			
Note: Single angle is loaded ec				
Note: Gusset plate thickness is	IV IIIIII			

Table 1. Input and output data for tension member (Single Angle section)

V

Input and output data for Compression member (Single Angle section)

Length	3200	mm		
fy	250	Mm N/mm ²		
Ymo	1.1	14/11111		
P	16.224	kN		
P	16224	N		
K	0.7	11		
rmin - req.	12.44	mm		
rmin - req.	1.24	cm		
Section-ID	65656	CIII		
A - Conntected leg	65	mm		
	65	mm		
B - Outstand leg t - thickness	6	mm		1
	12.6	mm	check	OK
rmin - pro.	1.26	mm	CHECK	OK
rmin - pro.	744	mm ²		
Ag - pro. Slenderness ratio	177.78	IIIII	check	OK
Section Classification	1//./0		CHECK	UK
	1			
Epsilon b/t	10.83333333		check	OK
<u>d/t</u>	10.83333333		check	OK
(b+d)/t	21.66666667		check	OK
Buckling class	semi compact		1 1	OIZ
Alpha - imperfaction factor	0.49		check	OK
No. of Bolts - pro. (Each end)	3			
End condition	hinged			
<u>k1</u>	0.7			
<u>k2</u>	0.6			
<u>k3</u>	5			
E	200000	N/mm ²		
Lamda (vv)	2.858			
Lamda (phi)	0.122			
Lamda - e	2.382			
Phi	3.873			
Stress Reduction factor	0.144	77/ 2		
fcd	32.82	N/mm ²		
Pd	24415.60	N kN	check	1
Pd - strength	24.42			OK

Table 2. Input and output data for compression member (Single Angle section)

Page No: 5

^{*} Note: All the symbols are used in this program are as per IS: 800-2007 (GENERAL CONSTRUCTION IN STEEL – CODE OF PRACTICE)

VI CONCLUSION

In this computer program, all guidelines as per IS: 800-2007 is included and it gives reliable and accurate results. It helps to designer to judge the proper selection of angle section for tension as well as compression members in roof truss. Moreover, instant results can be obtained by changing value of section as per requirements of design. At every stage of calculation, various checks are also done, so that designer can see proper selection of steel section.

VII REFERENCES

- [1] IS:800-2007 General construction in steel Code of practice (Third Revision)
- [2] Hand book of steel SP 6
- [3] Design of Steel Structures (By Limit State Method as Per Is: 800—2007) by S. S. Bhavikatti
- [4] Design of Steel Structures: Theory and Practice by N. Subramaniyan
- [5] Limit State Design of Steel Structures by S. K. Duggal