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Abstract
There will be 9.7 billion people in the world by 2050. Feeding 
them will require increasing current food production by up 
to 98 percent. This is not the only challenge. Climate change is 
an increasing threat to weather-dependent agriculture as we 
see more erratic rainfall patterns and more frequent floods and 
droughts. In addition, our current methods of food production 
contribute a quarter of global greenhouse gas emissions, 
further exacerbating climate change. Agriculture also has a 
significant impact on the environment as it consumes large 
amounts of precious natural resources like fresh water which 
are depleting rapidly. Moreover, we cannot expand the land 
under cultivation to increase food production without causing 
further deforestation. About 84 percent of the world’s farmers 
are smallholders and produce 30–34 percent of the world’s 
food. Yet, they contend with challenges such as low 
productivity, poor efficiency, and the effects of climate change 
mentioned. Increasing their productivity is essential for 
eliminating global poverty. To ensure food security for our 
future generations, agriculture needs become more 
sustainable—environmentally, economically, and 
socially—through applying technology, digital and 
innovation. 
Key Words: Climate change, global greenhouse gas 
emissions, exacerbating climate change, precious natural 
resources, low productivity, global poverty.
1. Introduction:

China has the largest population of about 1.4 billion in the 
world, and it also ranks first in agricultural population of about 
600 million. Agriculture is the most important industry in 
China. At present, China produces 25 percent of the world’s 
food and feeds around 19 percent of the world’s population 
with only 7 percent of the world’s arable land. For a long time, 
farming in China has been a labor-intensive industry. In recent 
decades, the Chinese government has been paying close 
attention to agricultural science and technology, leading to a 
high growth rate in China’s output of various agricultural 
products and enhancing the transformation from traditional to 
modern agriculture. Emerging digital technologies like 
artificial intelligence (AI), blockchain, cloud computing, and 
Internet of things (IoT) are already making an impact in 
several sectors and hold the potential to revolutionized food 
and agricultural systems globally. Precision agriculture 
technologies using AI that can improve resource efficiency 
and productivity of farming, blockchain systems integrated 
with IoT that can improve supply chain traceability, 
alternative proteins that can reduce the environmental impact 
of conventional meat production; these are among the many 
technologies that are changing the way we grow and consume 
food. The Global Centre is engaged in exploring the existing 
and emerging technologies that can help food systems become 
more sustainable and resilient, sharing knowledge and 
building capacity to help UNDP’s field offices, policymakers 
and other stakeholders to understand these technologies and 
their applications – including the opportunities and challenges 
they present and building multi-stakeholder partnerships to 
support their large-scale adoption, especially in developing 
countries to benefit smallholder farmers.  

Figure 1: Advanced technologies including satellite 
remote sensing and drone-powered data solutions 
help increase agricultural efficiency and productivity. 
Sources: Using satellite technology to transform 
agriculture in developing countries | UN Trade and 
Development (UNCTAD).
Blockchain for Food Traceability
Blockchain for food traceability is gaining momentum in the 
agri-food sector globally. Yet, there is little understanding 
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among ecosystem stakeholders and governments about what 
blockchain is, how it works and how it can be applied to the 
supply chain. Our aim is to make this information accessible 
and easy to understand for all.  To achieve this, we are 
designing a case study and concept note that will explain how 
blockchain technologies work and its benefits to food 
traceability for different actors in the supply chain. This will 
include a guide explaining how blockchain can be applied to 
the food value chain, including examples and case studies 
where its application has been successful.  We believe that 
blockchain technology will be transformational for a more 
efficient and transparent food system and can significantly 
contribute to international trade, improve food safety, and 
protect the rights of producers and consumers around the 
world. 
2. Internet of Things (IoT) in Farming  
A network of networked objects with sensors and software 
that enable data collection and exchange is referred to as the 
Internet of Things (IoT). IoT integration in farming entails the 
use of smart sensors, drones, and automated equipment to 
control and monitor agricultural operations. By enabling real-
time data-driven decision-making, optimizing resource use, 
and boosting productivity, this technology transforms farming 
practices. The farms of today are increasingly becoming 
digitalized. Digital farms are often said to have improved 
profitability and sustainability, but how much these 
technologies can help assist smallholder farmers and whether 
they are economically viable are unanswered.  Digital farming 
broadly encompasses technologies to assist producers in 
farming, most commonly known as precision agriculture 
technologies. We intend to design a report that will 
demonstrate the utility and viability of adopting digital 
farming technologies (focused on precision agriculture). This 
report will include detailed analyses of these technologies, 
their applications, outcomes and impact and feasibility of use.  

Figure 2: Internet of Things (IoT) in Farming. Sources: 
Smart Farming: Digital Transformation of Agriculture 
Through this document, we hope to provide governments and 
policymakers with a detailed breakdown of quantifiable 
benefits of various digital farming technologies and inform 

them of the best methods through which these technologies 
should be transferred and applied. Digital Agriculture (DA) 
deals with the practice of advanced technological solutions 
such as sensors, robotics, and data analysis for improving the 
ecological and economic viability of agricultural operations, 
and simultaneously elevating crop output and quality. 
Conventional farming methods have faced significant 
challenges in the past three decades to respond to the 
increasing demand for food, rising labor costs, reducing 
carbon footprint, and climate change (Abbas et al., 
2022a; Abbas et al., 2022b; Elahi et al., 2022; Elahi et al., 
2024). On the other hand, improving long-term efficiency and 
maintaining the viability of crop production requires 
adaptations of digital technologies to reduce input costs and 
increase profit margins. Digitalization of agriculture benefits 
from a wide range of automation software and hardware 
platforms to contribute to replacing tedious manual operations 
with continuous automated processes with the ultimate 
objective of securing food production for the increasing world 
population. In modern farms, multiple ground-based sensors 
combined with maps and drone-generated images, as well as 
artificial intelligence (AI) and prediction models are delivering 
detailed agronomic data on crop conditions to support farmers 
with short-term and long-term decision-making. However, 
their impact on the entire agri-food value chain, as well as the 
relatively newer concepts such as the Internet-of-Things (IoT), 
mobile apps, robotics, Artificial Intelligence (AI), Unmanned 
Aerial Vehicles (UAV), big data analysis, digital twins, and 
Blockchain fall under the umbrella of digital agriculture 
(Fielke et al., 2020).Digital agriculture is being practiced in 
many regions, either on commercial scales or in pilot plants. 
The fundamentals for DA however began to shape after 2010, 
with the popularity of some of the core technologies such as 
low-power wide area network (LPWAN) for IoT applications 
(Klaina et al., 2022), open-source software for robotics (Mier 
et al., 2023), and machine learning tools for data processing 
(Sharma et al., 2020; Sharma et al., 2021), which redefined the 
existing concepts of precision agriculture and smart farming.
Digital technologies are revolutionizing crop production 
towards greater sustainability by optimizing resource use, 
enhancing yields, and improving efficiency. Key digital tools 
include sensors, drones, and AI, which enable precision 
agriculture and real-time monitoring. This shift from 
traditional farming methods to data-driven approaches is 
crucial for meeting the growing global demand for food while 
minimizing environmental impact. 
Here's a more detailed look at how digital technologies are 
transforming crop production:
1. Precision Agriculture:
Sensors and IoT:
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Wireless sensors collect data on soil conditions, moisture, 
temperature, and plant health, providing real-time insights for 
optimized irrigation, fertilization, and pest management. 
Drones and Remote Sensing:
Drones equipped with cameras and sensors capture high-
resolution images and data, enabling farmers to monitor crop 
health, identify issues early, and optimize resource allocation. 
GPS and GIS:
Global Positioning Systems (GPS) and Geographic 
Information Systems (GIS) allow for precise mapping and 
management of fields, enabling targeted interventions and 
optimized input application. 
2. Artificial Intelligence and Machine Learning:
Data Analysis:
AI and machine learning algorithms analyze vast amounts of 
data from sensors, drones, and other sources to identify 
patterns, predict yields, and optimize farming practices.
Robotics and Automation:
Robotic systems can automate tasks like planting, harvesting, 
and weeding, increasing efficiency and reducing reliance on 
manual labor.
Predictive Analytics:
AI can predict potential problems like disease outbreaks or 
nutrient deficiencies, allowing farmers to take proactive 
measures and prevent losses. 
3. Farm Management Software and Blockchain:
Streamlined Operations:
Farm management software helps farmers organize data, 
track inventory, manage finances, and streamline operations, 
improving overall efficiency. 
Traceability and Transparency:
Blockchain technology provides a secure and transparent way 
to track crops from farm to consumer, ensuring food safety 
and building trust in the supply chain. 
4. Vertical Farming and Controlled Environment 
Agriculture:
Resource Efficiency:
Vertical farms and controlled environment agriculture (CEA) 
utilize hydroponics, aquaponics, and other techniques to 
maximize yields in a small footprint, minimizing land and 
water usage.
Reduced Pesticide Use:
CEA systems create a controlled environment that reduces the 
need for pesticides, promoting environmentally friendly crop 
production. 
5. Digital Twins and Simulations:
Virtual Representation:
Digital twins create a virtual replica of the farm, allowing for 
simulations of different scenarios and optimizing crop 
management practices. 
Agro-ecosystem Modeling:

Simulations can help understand how different factors affect 
the agro-ecosystem and make informed decisions about crop 
selection, planting density, and other management practices. 
Benefits of Digital Technologies:
Increased Crop Yields:
By optimizing resource use and identifying potential problems 
early, digital technologies can significantly boost crop yields. 
Reduced Environmental Impact:
Precision agriculture and CEA practices minimize water 
usage, fertilizer application, and pesticide use, leading to 
more sustainable farming practices. 
Improved Efficiency and Profitability:
Automation, data-driven decision making, and streamlined 
operations can improve overall efficiency and increase 
profitability for farmers. 
Enhanced Food Security:
By increasing yields and optimizing resource use, digital 
technologies can play a vital role in ensuring food security for 
a growing population. 
Challenges:
Cost of Adoption: The initial investment in digital 
technologies can be a barrier for some farmers. 
Digital Divide: Access to technology and digital literacy can 
be unevenly distributed, creating a digital divide between 
different regions and farmers. 
Data Security and Privacy: Protecting sensitive farm data 
from unauthorized access is crucial. 
Future Outlook:
Digital technologies are poised to play an increasingly 
important role in sustainable crop production, with ongoing 
research and development focused on further enhancing their 
capabilities and addressing the challenges of adoption. The 
integration of AI, robotics, and other emerging technologies 
promises to transform agriculture, making it more efficient, 
resilient, and environmentally friendly
2.1. Applications 
IoT provides a wide range of applications for in-the-moment 
monitoring, data gathering, and decision-making in several 
industries. Drones can provide aerial images for crop health 
evaluation, while IoT sensors can monitor soil moisture, 
temperature, and nutrient levels in agriculture. Devices for 
tracking livestock allow for remote animal health monitoring. 
By integrating these data streams into analytics platforms, 
farmers are given the tools necessary to make educated 
decisions about irrigation, fertilization, disease prevention, and 
general farm management, ultimately enhancing productivity 
and sustainability. 
2.2. Benefits 
By maximizing resource consumption, increasing output, and 
lowering prices, IoT has a big positive impact on agriculture. 
Smart sensors keep an eye on crop health, weather patterns, 
and soil conditions to provide accurate watering and 
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fertilization as well as effective resource management. Timely 
disease and pest management measures are made possible by 
real-time data. Automated equipment boosts operational 
effectiveness while labor costs are reduced by remote 
monitoring. All of these elements work together to improve 
farmer profitability by boosting yields, reducing waste, and 
reducing costs. 
3. Automation and Robotics in Agriculture 
Smart farming transforms agricultural practices by relying 
heavily on automation and robotics. Planting, harvesting, and 
irrigation operations are handled by automated machinery, 
which lowers labor requirements and boosts productivity. 
Robotics allows for selective harvesting and precise input 
application, reducing resource waste. Autonomous trucks 
improve logistics, while drones provide aerial data for 
agricultural monitoring. These technologies work together to 
improve modern agriculture’s productivity, sustainability, and 
economic viability.  

Figure 3: Agricultural Robots – How robotics is changing 
agriculture. Sources: Agricultural Robots – How 
robotics is changing agriculture
The integration of automation and control systems alongside 
data processing software, web-based applications, and mobile 
tools has significantly influenced farming practices over the 
past three decades, largely aiming to enhance efficiency in 
land and resource utilization. Prior to 2010, farmers relied on 
technologies such as the Global Positioning System (GPS) 
(Shamshiri et al., 2013; Shamshiri and Ismail, 2013), ground-
based sensing platforms, satellite maps, and local sensing 
devices like data loggers to monitor fields and identify 
deficiencies. However, the introduction of more compact 
technological solutions, such as autonomous drones, LiDAR 
sensors, high-resolution cameras, small-scale robots, and long-
range wireless transmitters, has led to a shift in precision 
agriculture and smart farming methods towards digitization. 
These advancements have played a crucial role in fostering 
economic growth and promoting sustainability in food 

production. In its workflow, precision agriculture utilizes data 
from different resources, such as satellite images, in-
situ sensors, and mobile sensing platforms, to identify 
deficiencies and enhance crop yield through improved 
resource management, including the application of variable 
rate technology (Shamshiri et al., 2018a
3.1. Examples 
Self-driving tractors for planting and tillage as well as robotic 
milking systems in dairy farms are examples of automated 
farming equipment. Crop monitoring, disease detection, and 
pesticide application are all done by drones. Robotic 
harvesting technologies help with the selective gathering of 
produce like lettuce and strawberries. Additionally, 
autonomous cars optimize logistics by moving items within 
farms. By streamlining farming operations, these technologies 
lower labor costs, increase accuracy, and eventually boost 
yields and profitability. 
3.2. Benefits 
There are numerous advantages to automation in agriculture. It 
improves overall efficiency by handling monotonous 
activities, freeing farmers to concentrate on making strategic 
decisions. Cost reductions result from reduced labor demands. 
Automation also reduces the possibility of workplace 
accidents, improving farmworkers’ safety. Automated systems 
increase production, decrease errors, and improve farm 
management through precise and consistent operations, 
making agriculture more economically and sustainably viable. 
4. Data Analytics and Farm Management Systems 
Smart farming depends on data analytics and farm 
management systems because they convert the enormous 
amounts of data gathered from sensors, drones, and other 
sources into insightful knowledge. With the use of this 
information, decision-makers may make well-informed 
choices that maximize resource use, forecast crop health, and 
improve overall productivity, resulting in more effective and 
environmentally friendly agricultural methods.  

Figure 4: Collaborative remote sensing observation service 
system for geohazard emergency response. Sources: Liu, Y. 
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and Zhang, J.,2022. Nat. Hazards Earth Syst. Sci., 22, 
227–244, https://doi.org/10.5194/nhess-22-227-2022, 2022.
5. Sensor technology resource emergency service system
Current remote sensors can be divided into satellite, aerial and 
terrestrial types according to the platforms on which they are 
mounted (Grün, 2008). Satellite remote sensing is divided into 
land satellites, meteorological satellites and ocean satellites 
according to their fields of operation. Land satellites are 
mainly used to detect the resources and environment on 
Earth's surface and contain a variety of sensor types such as 
panchromatic, multispectral, hyperspectral, infrared, synthetic-
aperture radar, video and luminescence (Belward and Skoien, 
2015).  Meteorological satellites observe Earth and its 
atmosphere, and their operations can be divided into Sun-
synchronous polar orbit and geosynchronous orbit (NSMC, 
2020; Wang et al., 2018). Oceanic satellites are dedicated 
satellites that detect oceanic elements and the marine 
environment with optical payloads generally including 
watercolor water thermometers and coastal zone imagers and 
microwave payloads including scatterometers, radiometers, 
altimeters and SAR (Fu et al., 2019). The countries and 
regions in the world that currently have autonomous remote 
sensing satellites include the United States, France, ESA 
members, Germany, Israel, Canada, Russia, China, Japan, 
South Korea and India. The main satellite launches are shown 
in Table A1. Aerial remote sensing is a technology that uses 
aircraft, airships and UAVs as sensor carriers for detection 
(Colomina and Molina, 2014).  

Figure 5: The global remote sensing technology market 
size was evaluated at USD 18.16 billion in 2022 and is 
expected to touch around USD 55.36 billion by 2032, 
growing at a noteworthy CAGR of 11.79% from 2022 to 
2032. Sources: Remote Sensing Technology Market 
Poised to Exceed CAGR 11.79% By 2032
Remote sensing technology is a non-invasive way to gather 
information about the physical characteristics of the earth's 
surface using reflected and emitted light from satellites and 
aircraft. The market growth is primarily due to an increase in 
earth observation projects by different space agencies. For 
example, the Indian Space Research Organisation (ISRO) has 

thirteen earth observation satellites and plans to launch ten 
more during 2020-2021. During the COVID-19 pandemic, 
remote sensing technology gained more adoption as countries 
used it to monitor the virus's spread and study environmental 
changes.
New earth’s observation dashboard was created by NASA, 
JAXA, and ESA in June 2020, which integrated various 
satellites to records to monitor changes in agriculture, climate 
and economic activity. The adoption of remote sensing 
technology in the smart city projects for zoning, urban 
planning, and security is paving ways for the market growth. 
Many countries are to investing heavily in smart city projects, 
which are expected to drive market growth during the forecast 
period.
Different airborne remote sensing devices have been 
developed to face various remote sensing tasks. These devices 
include digital aerial cameras, lidar, digital cameras, imaging 
spectrometers, infrared sensors and miniSAR (unmanned 
airborne microminiature synthetic-aperture radar). Ground 
remote sensing systems have two states: mobile and static. A 
mobile measurement system executes rapid movement 
measurement by means of vehicles (e.g., cars and boats) and 
consists of sensors such as charge-coupled device (CCD) 
cameras, cameras, laser scanners, GPS and inertial navigation 
systems (INSs) (Li et al., 2015). These can acquire the 
geospatial position of the target while collecting realistic 
images of the features. Static state measurement refers to the 
installation of sensors in a fixed place and includes laser 
scanners, cameras, ground-based SAR and surveying robots. 
These can form a ground sensor web through computer 
network communication and geographic information service 
technology.

Figure 6: Emergency geographic information service. 
Sources: Liu, Y. and Zhang, J.,2022. Nat. Hazards Earth 
Syst. Sci., 22, 227–244, https://doi.org/10.5194/nhess-22-227-
2022, 2022.
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In the face of geohazard emergency responses, 
space–air–ground remote sensors establish associations 
through collaborative planning to form a collaborative 
observation service system based on the process of 
“observation–transmission–processing–distribution”, as shown 
in Fig. 1. In the event of a geological disaster, the emergency 
command center responds quickly, planning observation 
missions according to observation needs and the current 
technical environment (1, 2). After remote sensing systems 
carry out observation missions (3), the data are received, 
processed and distributed through the data center, providing 
emergency services mainly based on geographic information 
(4, 5, 6).
The geographic information services provided by the remote 
sensing emergency service system are shown in Fig. 2. These 
services include data processing, data products, data services, 
model services, functional services and warning services. Data 
processing refers to the process and method of obtaining 
effective emergency information from the collected data and 
includes the data processing method, feature extraction, image 
classification and image analysis. Data products refer to the 
quality and current potential of various types of remote 
sensing products. Data services provide disaster-related basic 
data, thematic data and analysis data through the web map 
service (WMS), web feature service (WFS), web coverage 
service (WCS) and web map tile service (WMTS). Functional 
services provide quantitative, qualitative, characterization and 
visualization of geospatial phenomena through spatial analysis 
services, terrain analysis services and visualization services. 
Model services provide various models for calculation, 
analysis, anomaly identification, damage assessment, 
situational assessment, evaluation, decision-making and 
optimization. Warning services provide early warnings of 
disasters with regard to space, time and situation.
6. Digitalization technology in Agriculture
6.1 Remote Sensing Technology:
Utilizing UAV imagery to estimate the height and density of 
plant canopies offers valuable insights into the growth status 
of field plants. This method can be outlined in three main 
steps as (i) generating a digital surface model (DSM), (ii) 
creating a digital terrain model (DTM), and (iii) determining 
plant height by subtracting the DTM from the DSM. This 
approach holds particular significance in crop management 
decisions reliant on site-specific canopy characterization. The 
information generated through this method find applications 
across various domains of DA and PA, including leaf area 
index evaluation (Comba et al., 2020), precision crop 
protection (Garcerá et al., 2021), site-specific irrigation 
(Jiménez-Brenes et al., 2017), nutrient management (Tee et 
al., 2023), yield prediction (Gené-Mola et al., 2020), 
autonomous navigation (Pathak et al., 2019; Fielke et al., 
2020), and early disease detection (Jurado et al., 2020). UAV-

based remote sensing platforms are mainly used to monitor 
soil properties and crop stress, creating valuable information 
for developing decision support systems in pest control 
applications, smart fertilization, and irrigation management 
(Lajoie-OMalley et al., 2020). Although satellite images can 
also provide information about the existing of such variability 
in the fields in a shorter period of time, however the quality of 
their images depends on a cloud-free view, which limits their 
applications at any time and location. In addition, they do not 
offer a flexible and affordable platform for experimenting with 
multiple sensors. On the other hand, UAVs offer higher spatial 
and temporal resolution data which makes them a versatile 
remote sensing platform in different season and growth stages 
for supporting a wide variety of applications such as plant 
phenotyping (Shamshiri et al., 2018c; Comba et al., 2020), 
Leaf Area Density (LAD) estimation (Garcerá et al., 
2021; Bates et al., 2021), determination of Leaf Chlorophyll 
Content (LCC) (Vergara-Díaz et al., 2016), and plant breeding 
(Guo W. et al., 2021).

Figure 7: An emerging method of agricultural monitoring 
is unmanned aerial vehicle low-altitude remote sensing 
(UAV-LARS). Sources: Remote Sens. 2021, 13 (6), 
1221; https://doi.org/10.3390/rs13061221
 Several studies have demonstrated the effectiveness of UAV-
based LAI estimation methods across different crop types and 
environmental conditions. For instance, Córcoles et al. 
(Córcoles et al., 2013) employed a UAV-based automated 
infrared imaging system to estimate LAI for onion crops, 
showing a linear correlation between canopy cover and LAI. 
Lendzioch et al. (Lendzioch et al., 2019) successfully 
estimated winter LAI and snow depth in a spruce forest using 
UAV-based imagery, while Sha et al. (Sha et al., 2018) 
compared UAV-based LAI estimation with field 
measurements for grassland pastures in China, revealing 
inconsistencies in near-infrared spectrum measurements. 
Additionally, Roosjen et al. (Roosjen et al., 2018) estimated 
LAI and leaf chlorophyll content of potatoes using UAV 
imagery, noting the impact of multi-angular angles and zenith 
angle on LAI estimation accuracyMoreover, detailed and 
reliable canopy information aids farmers in making timely and 
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site-specific management decisions, underscoring the potential 
of 3D point cloud datasets for economic and environmental 
conservation strategies. Leaf area index estimation is crucial 
for enhancing crop growth models and addressing field 
uncertainties such as terrain erosion (Rodrigo-Comino, 2018), 
soil organic carbon problems (Chen et al., 2021), and climate 
change impacts (Balasundram et al., 2023). Collecting LAI 
data traditionally involves manual measurements using in-
field portable instruments (Mourad et al., 2020) such as LI-
3000C (LI-COR Biosciences GmbH, Homburg, Germany) or 
AccuPAR LP-80 (Metergroup, Pullman, WA, United States). 
However, UAVs equipped with high-resolution imaging 
sensors, LiDAR, multi-spectral, and hyperspectral cameras 
(Zhang et al., 2009; Hardin and Jensen, 2011; Wallace et al., 
2012; Knoth et al., 2013; Shahbazi et al., 2014; Whitehead et 
al., 2014; Linchant et al., 2015) have proven successful in 
estimating LAI for various crops, including maize (Han et al., 
2018), berries (Herrero-Huerta et al., 2015), almonds (Torres-
Sánchez et al., 2018), olives (Jiménez-Brenes et al., 2017), 
grapes (Mathews and Jensen, 2013), apples (Hobart et al., 
2020), and pears (Guo Y. et al., 2021). UAV remote sensing 
also shows promise in estimating LAI and canopy coverage 
ratio at the plant and canopy levels (Lei et al., 2019), essential 
components for estimating evapotranspiration, surface energy, 
and water balance (Mourad et al., 2020).
6.2 Plant diseases using RGB images or visual inspection.
Identifying plant diseases using RGB images or visual 
inspection is often only feasible once visible symptoms 
manifest, often too late for effective intervention by farmers. 
For instance, Ganoderma disease, a significant threat to oil 
palm plantations, typically presents noticeable symptoms like 
foliar chlorosis, frond breakage, decayed tissues at the palm 
base, and fruiting body production at an advanced stage. This 
disease, causing both basal and upper stem rot, remains a 
severe issue in Southeast Asia, leading to stand loss, reduced 
yields, and the need for premature replanting. Young palms 
exhibiting symptoms may perish within 6–24 months, while 
mature palms can survive up to 3 years, although basal stem 
rot can destroy up to 80% of the total standing palms. Studies 
suggest a strong correlation between oil palm yields and 
nutrient levels. Hyperspectral analysis of images in agriculture 
offers promising opportunities for early Ganoderma disease 
detection in oil palms, with preliminary data indicating distinct 
spectral characteristics of infected leaves. Developing a rapid 
and effective field-level detection and mapping method for 
Ganoderma would aid growers in disease management and 
potentially enhance financial outcomes.
The methodology outlined in Figure 4 proposes a 
customizable solution, adaptable and scalable with various 
multi-spectral and hyperspectral cameras for disease detection. 
The procedure involves systematic steps involving (i) 
analyzing disease spectral characteristics in controlled lab 

settings, (ii) developing a classification method to differentiate 
the disease from other stresses and similar diseases, (iii) 
exploring the use of low-cost spectral radiometers for rapid 
screening, (iv) creating an instrumented platform for 
hyperspectral image collection and georeferencing on farms, 
and (v) conducting field trials to assess hyperspectral imagery 
effectiveness in diverse conditions. Adapting a UAV remote 
sensing platform for early disease detection entails addressing 
key questions: (i) the disease’s detectability at different 
infection stages, (ii) unique spectral characteristics of 
Ganoderma reflectance data, (iii) optimal statistical or 
mathematical methods for analyzing Ganoderma spectral data, 
and (iv) the effectiveness of low-cost multiband radiometers in 
aiding scouting crews to identify suspiciously infected trees.
6.3.  Hyperspectral imaging and line scanning 
Traditional methods of phenotyping, such as manual 
measurement and visual inspection, can be time-consuming 
and labor-intensive. With computer vision, data can be 
collected at a much faster rate, allowing for more frequent and 
detailed monitoring of plant growth and development. In 
addition, computer vision can provide more accurate and 
consistent data than traditional methods. Human error and 
subjectivity can affect the accuracy and consistency of manual 
measurements and visual inspections. Computer vision 
algorithms, on the other hand, are able to provide a more 
objective and consistent assessment of plant characteristics, 
providing a cutting-edge solution to analyze plant stress and 
disease identification. This is done by capturing images of the 
plant and then using image processing algorithms to analyze 
the images for signs of stress or infection. Various studies 
have highlighted the contributions of computer vision to 
improving yields and reducing costs. The technology has been 
also used to automate the process of seedling counting and 
selection, using image processing algorithms to accurately 
count and identify seedlings, which can help to improve the 
efficiency and accuracy of seedling selection. The following 
sub-sections provide summary reports on some of the projects 
in digital agriculture that incorporated computer vision.
Hyperspectral imaging and line scanning are two advanced 
non-destructive and non-invasive techniques that are being 
used in digital agriculture to collect data on the crop, even 
during the growing season and without affecting crop yields, 
with the objective of improving crop monitoring and 
management. Hyperspectral imaging captures images of crop 
plants and leaves using a wide range of wavelengths of light, 
from the visible to the infrared, and uses these images to 
identify different plant species, detect signs of stress or 
disease, or measure the amount of moisture, chlorophyll, and 
other important plant characteristics. This technology can 
provide farmers with detailed information about the health and 
growth of their crops, and provide knowledge-based decisions 
about irrigation, fertilization, and pest control. In recent years, 

Journal of Cyber Security(2096-1146) || Volume 7 Issue 8 2025 || www.journalcybersecurity.com

Page No: 7

https://www.frontiersin.org/journals/environmental-science/articles/10.3389/fenvs.2024.1375193/full
https://www.frontiersin.org/journals/environmental-science/articles/10.3389/fenvs.2024.1375193/full
https://www.frontiersin.org/journals/environmental-science/articles/10.3389/fenvs.2024.1375193/full
https://www.frontiersin.org/journals/environmental-science/articles/10.3389/fenvs.2024.1375193/full
PIF
Textbox



8 | P a g e

hyperspectral imaging has gathered a large amount of interest 
in the field of non-destructive techniques. Originally 
developed for remote sensing applications, hyperspectral 
imaging is now being widely used in a multitude of fields 
including the food and agricultural sector. In the food industry, 
the commonly used standard methods are destructive and 
invasive in nature. Thus, they are not only time-consuming but 
also resource and energy intensive. With varying quality 
parameters across different products, the food industry 
continuously seeks in/on-line processing techniques that meet 
the quality demands as well as provide rapid, accurate, and 
reliable results. This approach combines the salient features of 
machine vision and near-infrared spectroscopy (Yu et al., 
2020). Through the spectral and spatial information obtained 
from hyperspectral imaging, detailed information on the 
product has now become possible. Of the different acquisition 
techniques, line scanning is one of the most commonly used 
methods within the food industry (Ma et al., 2019. Moreover, 
line scanning allows for continuous scanning of the product 
line-by-line, thus acquiring extensive spectral information on 
the product. This technique is being applied to predict 
moisture content and the distribution within fruits and 
vegetables such as apples, and purple-speckled cocoyam 
(Crichton et al., 2018; Ndisya et al., 2021). In addition, 
moisture content hyperspectral imaging has also shown the 
ability to predict several quality parameters such as total 
phenols and antioxidants properties in cocoa beans (Caporaso 
et al., 2018), chromaticity in apples’ slices (Crichton et al., 
2017), and total carotenoids content in carrots (Md Saleh et 
al., 2022). Crichton et al., 2017 also implemented HSI to 
classify the freshness in beef. The results from this 
investigation present successful classification between the 
different storage conditions (i.e., fresh, matured, fresh-frozen 
thawed and matured-frozen thawed) through the varying color 
changes among the beef slices. With the view of moving 
towards in-line monitoring using hyperspectral imaging, 
Sturm et al., 2020 (Sturm et al., 2020) integrated a Vis-NIR 
camera within a pilot-scale hop dryer to investigate the 
dynamic changes within the hop cones. The study shows a 
proof of concept of integration of method within semi-
industrial scale drying systems to the dynamic changes 
occurring within the product. In conjunction with this study 
(Sturm et al., 2020; von Gersdorff et al., 2021; Shrestha et al., 
2020), also compared hyperspectral imaging and standard 
laboratory methods to assess its applicability for continuous 
monitoring. 
6.4 Wireless sensors Technology and IoT monitoring
Implementation of digital agriculture requires wireless 
communication between sensors and controllers for remote 
monitoring and sending warning messages in open-field and 
closed-field farming via a flexible and modular automation 
solution that is compact in size, cost-effective, and easy to 

install and maintain. Studies show that smart irrigation and 
fertilization management systems (Giannoccaro et al., 
2020; Lin et al., 2020) are capable of maintaining optimum 
level of pH and nutrient contents for plants with minimum 
inputs. The success of such an optimization relies on the 
integration and adaptation of the sensors and controllers with 
wireless communication and the IoT concepts for 
incorporating real-time data transfer and live monitoring. 
Wireless sensor network (WSN) was adopted in agriculture in 
the early 2000s, and has served as the backbone of IoT-driven 
automation systems, comprising various sensor nodes, 
repeaters, and receivers interconnected and meshed across 
fields to sustain DA. In recent years, LoRa technology has 
emerged as a solution, enabling long-range communication 
between sensor nodes and receivers for field parameter 
monitoring. LoRaWAN, its networking protocol layer, is a 
leading LPWAN technology renowned for ultra-long-range 
wireless data transmission with minimal power consumption, 
ideal for digital agriculture applications (Shamshiri and 
Weltzien, 2021). LoRa bridges the gap between power 
efficiency and transmission range in remote areas lacking 
mobile coverage, utilizing reserved ISM radio bands like 
433 MHz (Asia), 868 MHz (Europe), and 915 MHz (Australia 
and North America). Depending on network architecture and 
repeater node density, LoRa can cover distances of 2–10 km in 
rural areas, extendable to 100 km with repeaters. 
6.5 Wireless monitoring of field machine index
By tracking of agricultural machinery using LoRa GPS tracker 
it is possible to determine their timeliness in large scale 
operations. This is of interest for growers from a management 
perspective, providing them with an overview of the efficient 
time that the machine has spent on the field, and the number of 
hours that has been spent on stops and row-end turning. For 
this purpose, information such as time, latitude, and longitude 
from standard NMEA GPS strings are stored and transmitted 
using one or multiple LoRaWAN GPS tracker modules. 

Figure 8: Smart greenhouse architecture diagram. 
Sensors 2024, 24(8),2647; https://doi.org/10.3390/s24082647
The messages are received by one or more LoRaWAN 
gateways that can be located up to 10 km or more from the 
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machine. The gateways might benefit from preprocessing 
software before uploading the data to a cloud-based mobile 
management app, for live monitoring of the total operation 
time, total stops and row-end turning time (ineffective 
operation time), total covered area, and average travel speed. 
An overview of the steps involved in data collection and 
processing of this approach together with sample results are 
shown in Figure 8. The outputs of the software is directly used 
to calculate field efficiency and machine index (Shamshiri et 
al., 2013). One of the main difficulties in processing raw GPS 
data is that they usually contain empty lines or broken strings. 
The application software that was used to produce results 
demonstrated in Figure 8 has built-in features that can detect 
different interruptions and outliers before processing the 
data via a simple user interface. For offline data processing, 
the entire calculation is carried out via three simple steps: 
“Open data”, “extract data”, and “process data”. As a result, 
the software generates an output table in Excel containing 
detailed information about the operation time and location of 
the machine in the field.
6.6 IoT-based monitoring of microclimate parameters
These sensors include the BME280 (for air temperature, 
humidity, and atmospheric pressure), DS18B20 (for soil 
temperature), LDR Photoresistor (for light sensing), SX239 
(for soil moisture), and NEO-7 GNSS modules. To ensure 
robust and efficient processing, the sensor node utilizes 
powerful ESP32 and Atmega328P microcontrollers integrated 
with customized codes for high efficiency and ultra-low power 
consumption. Conventional data loggers that have been 
integrated with wireless modules and IoT patches have 
demonstrated to be a promising solution for improving the 
reliability of data collection for digital agriculture 
applications. These redundant devices minimize the disruptive 
effect of outdoor environment on field monitoring. 

Figure 9: Design and implementation of a low-cost IoT-
based agroclimatic monitoring system for greenhouses. 
Sources: AIMS Electronics and Electrical 
Engineering,2021, Volume 5, Issue 4: 251-
283. doi: 10.3934/electreng.2021014
A multi-channel hybrid data logger, illustrated in Figure 9A, 
features an IP66 enclosure, WiFi and LoRa antennas, an 

external power supply, and aviation plug connectors 
specifically designed for seamless integration with various 
sensor probes in both closed-field and open-field crop 
production systems. Each node is equipped with two separate 
circuit boards: one for transmitting sensor and GPS 
data via LoRa 868 MHz (Figure 9B) and another for 
LoRa/WiFi communication and data storage on an SD card 
(Figure 9C). This design facilitates the addition of new 
sensing capabilities to existing wireless networks and allows 
for easy replacement of defective sensor probes, minimizing 
network maintenance costs. The three connectivity boards 
demonstrated in Figure 9 include all necessary electronics and 
sockets for connecting typical sensors used in wireless 
monitoring of the indoor environment. For example, the 
logger board shown in Figure 9C supports Bluetooth and WiFi 
communication and can save data on an onboard SD 
card via SPI data transfer. This board can also be interfaced 
with other microcontrollers using the onboard CANBUS 
modules. All sensor boards have been optimized for low-
power consumption (deep sleep mode) and utilize MOSFET 
transistors in switch mode for sensor probes and memory 
cards in a way that when the board wakes up from a deep 
sleep mode, its controller triggers the MOSFET transistor to 
activate all power lines. 

Figure 10: Multi-Layer Smart Farming Architecture. 
Sources: February 2020, IEEE Access PP(99):1-1. 
DOI:10.1109/ACCESS.2020.2975142
The sensor node has a DS1337 IC for real-time logging clock 
and can access dates and times from an available world clock 
server in the presence of a WiFi network. The final log file is 
saved on a cloud server or the onboard SD card with GPS and 
time stamps and may include hundreds or thousands of data 
lines, depending on the data collection frequency and growing 
season. Several sensor nodes have been deployed and tested 
successfully in multiple farming applications and has 
measured, recorded, and transferred data without interruptions. 
The hybrid data logger system presented in Figure 9C is used 
for dynamic assessment of controlled environments, 
particularly regarding microclimate parameters and soil 
temperature (ST) set-points prior to cultivation. Understanding 
the reference values for air temperature, relative humidity 
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(RH), vapor pressure deficit (VPD), and ST across various 
growth stages of fodder production (Ahamed et al., 2023), 
allows for real-time visualization of collected data on a mobile 
app, offering insights into deviations from ideal conditions. 
This approach is vital for decision-making in large-scale 
productions, where a controlled environment model is initially 
constructed and tested. To facilitate the monitoring and 
download of data from multiple sensors and cloud storage, the 
two desktop software applications shown in Figures 9D, 
E were developed. These applications can interface with 
sensor controllers via multiple serial COM ports, allowing 
users to execute commands and configure custom settings. 
Additionally, the software enables users to download log files 
containing sensor performance data (e.g., battery status, clock 
status, and historical parameters) and upload stored data to a 
cloud server. The workflow of an IoT-based monitoring 
system that has been realized by means of distributed nodes 
and modular hardware in a digital agriculture project for berry 
orchards (Shamshiri and Weltzien, 2021) is shown in Figure 
10. In this scheme, each platform is custom-designed for 
specific applications in open-field cultivations based on a 
powerful microcontroller (32-bit, dual-core, 240 MHz) with 
LoRa modulation at 868 MHz. The nodes’ controllers were 
installed on long wood supports at an average height of 2 m 
from ground to overcome the issues with signal connectivity 
near high-density bushes and plants. For large-scale farms, the 
number of the sensor nodes, locations of the repeaters, power 
consumption, operating frequencies, and the distance between 
transmitters and receivers should be considered for continuous 
data collection. 
6.7. Identification of plants and weeds on the basis of AI-
based Technology: 
An expert that assesses crop diseases in the field can easily 
distinguish yellow rust from other crop diseases and score its 
severity at that location. This is possible because the visual 
symptoms of most diseases have unique features that are quite 
different from each other. This is true for many weed plants 
and other pests as well. A monitoring system for crop 
protection that can exploit this information in a timely, site-
specific and selective manner would help to improve control 
strategies for crop protection and reduce pesticides by 
applying measures more precisely and sustainably in the field. 
However, those systems would be in dire need of very high-
resolution data about the crop canopy. Traditional methods of 
plant disease identification, such as visual inspections and 
manual measurements, are time-consuming and labor-
intensive. Plant disease symptoms, weed plants, or pest insects 
are normally tiny constituents in a plant canopy and are 
usually hard to detect with conventional remote sensing 
applications specially in the early stages of the outbreak or 
growth of the pest. The plant disease yellow rust (Puccinia 
striiformis West. F. sp. tritici), for example, develops small 

but distinctive features as symptoms that resemble long and 
narrow yellow to orange stripes. They usually occur on the 
plant leaves between the veins and consist of Urediniospores 
pustules with a dimension of 0.4–0.7 mm accompanied by 
chlorosis and necrosis (Chen et al., 2015). The unique and 
decisive features cannot be found at the canopy or field scale 
but rather at the plant or leaf scale. Thus, even drones 
operating at altitudes 20–100 m typically used for 
photogrammetric orthophoto production cannot resolve the 
features accurately enough to detect and distinguish pests in 
the field successfully.
6.8 Detection of yellow rust with evaluation by CNNs 
CNNs much more versatile and adaptable for automatic image 
evaluation. In Schirrmann et al. (2021) (Schirrmann et al., 
2021), a deep learning model was trained to detect yellow rust 
from very high-resolution RGB images at different stages of 
the disease outbreak. A deep residual neural network (ResNet-
18) was used as deep learning architecture. Res Nets are 
CNNs that include shortcut connections in the network 
architecture based on residual functions that enable skipping 
specific layers in the network, which increases the training 
performance of the deeper layers (He et al., 2016). Input for 
training and for testing included thousands of images taken at 
2 m in nadir perspective from an RGB camera. The trained 
ResNet model showed high accuracy for estimating the yellow 
rust symptoms after the disease has spread into the canopy to 
about 2%–4%, which was after 40 days of inoculation (DAI).
6.9 Infrared, and LiDAR, to detect weeds
Some companies have developed sensor-based weed detection 
systems, which use a combination of sensors, such as cameras, 
infrared, and LiDAR, to detect weeds. Weed detection is one 
of the most important aspects of digital agriculture that has 
received significant attention in recent years, with the goal of 
applying computer vision and machine learning algorithms to 
analyze images of crops in real time for rapid identification 
and removal of weeds.  These systems can be mounted on 
UAVs, field robots, tractors, or other ground vehicles to scan a 
field while the vehicle is in motion. In addition, some studies 
have reported on the development of weed detection systems 
that can scan a large area in a short time and are trained to 
recognize specific weeds by analyzing large amounts of image 
data in order to improve the accuracy and efficiency of weed 
classification based on their characteristics. An example 
includes the work of de Camargo et al. (2021) (de Camargo et 
al., 2021), in which the optimization of a ResNet-18 model for 
the classification of weed and crop plants in UAV imagery 
was considered. This study is part of a larger project that aims 
to develop an intelligent real-time monitoring and mapping 
system for the detection of weed distribution in cereal crops. 
The optimized model was implemented on an NVIDIA Jetson 
AGX Xavier embedded system with TensorRT (NVIDIA 
CORPORATE, Santa Clara, CA, United States). In 16-bit 
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mode, a full-image evaluation with the optimized model was 
about 2.2 frames per second. No memory issues occurred 
during training and testing. Using images from a test field, the 
image classifier had an overall accuracy of 94%. Even in more 
challenging parts of the images where plants overlapped, the 
model quite accurately identified the weed species. Both 
exemplary research studies show that combining low-cost 
imaging technologies, e.g., RGB imaging, with artificial 
intelligence enables the extraction of more specific field 
information for crop protection. 
7. Digitalization in automation and remote operation
7.1 Internet of robotic things (IoRT) for robot 
teleoperation
An effective IoRT-based solution should incorporate the use 
of long-range wireless communication, simulation 
environment, and web-based applications to constantly 
monitor the robot in the field, and transmit human-in-the-loop 
control commands for robot teleoperation. The integration of 
robotics and wireless connectivity that are integrated with 
virtual reality, digital twin concepts, and IoT platforms, is 
often denoted as the Internet of Robotic Things (IoRT) 
(Vermesan et al., 2020) and has emerged in the last few years 
for collaborative control and teleoperation (Su, 2020) to 
optimize the use of autonomous agricultural machinery in 
unstructured farms. The main justifications for the deployment 
of IoRT infrastructure in agriculture can be summarized as (i) 
to provide real-time monitoring and control of the robot’s 
states and functionality (i.e., location, orientation, speed, 
distance to obstacles, and battery status), (ii) to feed these data 
to simulation models, digital shadows, and cloud-based 
decision support systems, and (iii) to send instant responses to 
the robot for assisting the autonomous navigation. A 
conceptual illustration of the proposed IoRT solution using a 
local LoRa network for exchanging messages between the 
actual mobile robot in the field and the digital shadow of that 
robot inside a virtual environment is shown in Figure 15. This 
approach assists the navigation of the robot in complex 
situations without the need for high-end network 
infrastructure.
7.2 Digital automation in variable rate applications
In precision agriculture, variable rate applications such as 
spraying or fertilizing were either realized by means of 
georeferenced prescription maps that were usually generated 
based on satellite remote sensing techniques, or by using on-
the-go sensors. To this aim, tractors and other large machinery 
were required, and the availability of accurate GPS signals 
was crucial for the success of the operation. In digital 
agriculture however, drones (Shamshiri et al., 2018c) and 
swarms of small-scale robots that benefit from sensor fusion 
can operate in GPS denial environments and can deliver more 
precise VR applications by targeting individual plants 
(Shamshiri et al., 2018a). This is possible due to the 

availability of low-cost sensors, high-performance 
microcontrollers, and onboard computers that can process big 
data, support complex models, and simulate parallel decision-
making scenarios for converting precise data into actions, 
which in return provides farmers with local-specific 
information on-the-go. In traditional agriculture, the same 
amount of agricultural input is applied across the field 
regardless of within-field variability, such as topography, 
variation in soil type, texture, or organic matter content, etc. 
This “one size fits all” approach to applying inputs may lead 
to either under- or over-applications of inputs, and 
consequently, variations in yield across the field, but it further 
impacts environmental sustainability and farm 
economics.Figure  showcases a novel design of a variable rate 
liquid fertilizer applicator, featuring a distinctive flow control 
and spray system capable of administering NPK (Nitrogen, 
Phosphorus, and Potassium) simultaneously at variable rates 
around oil palm trees in a single pass. This system, developed 
following the spot application method, is capable of evaluating 
the NPK status of a 25 m2 soil area and applying N, P, and K 
nutrients at different variable rates using aqueous solutions of 
straight fertilizers (Yamin et al., 2020a; Yamin et al., 2020b). 

Figure 10: Conceptual schematic of a sensor-based 
variable rate fertilizer applicator. Sources:AE607/AE607: 
Variable Rate Technology and Its Application in Precision 
Agriculture
Based on simulation analysis, six 8006 flat fan nozzles were 
meticulously chosen to ensure optimal swath coverage of 
fertilizer spray. Nozzles 1–3 were affixed vertically on the 
horizontal boom to apply spray on the machine side of oil 
palm trees, while nozzles 4–6 were positioned at −22°, −21°, 
and −20° angles to the horizontal plane on a 45° inclined 
boom to administer spray across the tree, employing the 
trajectory approach as depicted. 
7.3 Agro-food robotics
Comprehensive research and development in agricultural 
robotics have been documented in a wide range of review 
papers (Shamshiri et al., 2018a; Bergerman et al., 
2016; Duong et al., 2020; Kootstra et al., 2020; Oliveira et al., 
2021a) covering specific tasks such as phenotyping (Atefi et 
al., 2021; Yao et al., 2021; Xu and Li, 2022), arable farming 
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(Emmi and Gonzalez-de-Santos, 2017), livestock farming 
(Ren et al., 2020), greenhouse horticulture (Barth et al., 2016), 
orchard management (Zhang et al., 2019), forestry (Oliveira et 
al., 2021b), and food processing (Duong et al., 2020). 

Figure 11: Automated harvesters use a combination of 
machine vision with a grasping tool to pick fruit and 
vegetables with precision. For some crops, this is relatively 
straightforward; for example, a robot harvesting wheat 
only needs to recognised the shape of rows planted in a 
field, which can be done by emitting lasers at the crop and 
measuring the reflection. Sources: Agro Robots | Which 
Robots Actually Work on Farms? | FoodUnfolded
Agro-food robotics represents a fast advancing domain that is 
transforming farm production capacities, leveraging the 
advantages of robots over human labor, including heightened 
accuracy and efficiency, enhanced consistency and reliability, 
and reduced in digital agriculture, farmers are eager to identify 
deficiencies and variations in large-scale cultivations, 
employing precise technology and accurate management 
solutions to address them effectively. Furthermore, optimizing 
input utilization is a promising approach to boost farm 
profitability. Review papers also cover specific technologies 
used in agricultural robotics, such as computer vision (Lu and 
Young, 2020; Tian et al., 2020; Fountas et al., 2022; Wang et 
al., 2022), active perception (Magalhães et al., 2022), path 
planning (Santos et al., 2020), and grasping and soft grasping 
(Elfferich et al., 2022; Navas et al., 2024). operational costs. 
Robots that are equipped with several data acquisition devices 
such as multi-spectral (Karpyshev et al., 2021), hyperspectral 
(Zhang et al., 2012), NDVI (Tiozzo Fasiolo et al., 2022), 
thermal (da Silva et al., 2021), or NIR cameras (Milella et al., 
2019) provide a great opportunity for field scouting 
(Yamasaki et al., 2022), early disease detection (Mishra et al., 
2020), and yield estimation (Kurtser et al., 2020; Massah et 
al., 2021).
The Agri Stack is a collection of technologies and digital 
databases proposed by the Central Government focusing on 
India’s farmers and the agricultural sector.

 The central government has claimed that these new 
databases are being built to primarily tackle issues such 
as poor access to credit and wastage in the agricultural 
supply chain.

 Under Agri Stack’, the government aims to provide 
‘required data sets’ of farmers’ personal information to 
Microsoft to develop a farmer interface for ‘smart and 
well-organized agriculture’.

 The digital repository will aid precise targeting of 
subsidies, services and policies, the officials added.

 Under the Programme, each farmer of the country will 
get what is being called an FID, or a farmers’ ID, linked 
to land records to uniquely identify them. India has 140 
million operational farm-land holdings.

 Alongside, the government is also developing a unified 
farmer service platform that will help digitize agricultural 
services delivery by the public and private sectors.

7.4. ROS-based multi-channel infrared sensors 
Data fusion and multiple perception solutions are usually 
employed to assist the existing GPS-based navigation and to 
improve the reliability of the operation. The data shows the 
hardware layer of a control system that benefits from a set of 
ROS-based multi-channel infrared sensors for providing 
feedback, and a Jetson Nano onboard computer for performing 
the computation. The system is expected to maintain an 
agricultural tractor between the plants’ rows with an accuracy 
of 5–10 cm from the side with an ideal speed of 5–8 km/h 
(Weltzien and Shamshiri, 2019). In the software layer, 
different controllers including PID, machine learning, and 
fuzzy knowledge-based algorithms (Shamshiri et al., 2024) 
can be implemented and compared. However successful 
development of such systems requires a proof-of-
concept via extensive validation tests with the digital 
representation of the sensors, a dynamic model of the robot 
platform, and a virtual replica of the orchard. The 
effectiveness and throughput of agricultural mobile robots are 
propelled by the utilization of machine learning (ML) and 
deep learning (DL) techniques, which empower robots to learn 
from and analyze data autonomously, without explicit 
programming. These data served as the foundation for creating 
a virtual orchard within Coppelius Sim (Shamshiri et al., 
2018b), which was interfaced with the ROS (Quigley et al., 
2009). This setup facilitated the testing of different sensors, 
hardware in the loop, and control algorithms on a full-scale 
simulated tractor and orchard model, as depicted in Figure. 
The simulation methodology involved translating raw data 
streams from various sensor inputs (such as GNSS, LiDAR, 
laser, radar, and RGB camera) into actionable information 
within the command and control system. This allowed for 
experimentation with autonomous navigation, enabling the 
tractor to avoid both moving and stationary obstacles within 
the orchard environment. Through this simulation-based 
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approach, the proposed collision avoidance system could be 
thoroughly evaluated and refined before implementation in 
real-world settings.

Figure 12: Owlbot robot and its components. (a) Bottom 
view; (b) Side view. Sources: Sensors 2023, 23(7), 
3648; https://doi.org/10.3390/s23073648
 The result provided a safe, fast, and low-cost experiment 
platform for the development, testing, and validating of the 
sensing and control strategies with different algorithms. The 
simulation scene shown in Figure 18A enabled human-aware 
navigation by finding the best positions for each sensor on 
different tractors and provided a flexible solution for attaching 
other implements and determining the optimum row-end 
turning patterns in presence of random obstacles. It also 
accelerated complicated analysis with the weight distribution 
of the attached implements and to understand the behavior of 
the tractor on uneven terrains. The main elements of the 
simulation scenes in this project were (i) mesh files 
representing plants, tractors, and obstacles, (ii) API and codes 
that created interfaces between different software 
environments, and (iii) algorithms and dynamic models 
including image processing for human detection, inverse 
kinematics for the hydraulic arms, minimum distance 
calculation, steering system, path following, and obstacle 
avoidance algorithms. 
7.5. Separate custom-designed IoT-based controller
Maintaining precise control of environmental variables within 
both open-field and closed-field production systems has 
significant potential for enhancing operational sustainability. 
By minimizing water, chemical, and energy demands while 
simultaneously mitigating disease spread, and increasing 
yield, such control measures can result higher profits. In 
controlled environments like aeroponic or hydroponic indoor 
farming, automation systems encounter various uncertainties 
and disturbances that elude complete modeling or 
implementation via conventional control algorithms. Since 
control of some actuators require separate driver boards that 
can only receive specific type of messages, a separate custom-
designed IoT-based controller was designed that 

communicates with wireless sensor nodes, end-users, and 
actuators drivers, and can send and receive command 
signals via CANBUS as shown in Figure 20. This controller 
board benefits from a STM32 32-bit ARM processor, and an 
ESP8266 microcontroller, an onboard RTC clock, two 
CANBUS ports for industrial communication, and an SD card 
for data logging. The board can also be interfaced 
simultaneously with multiple controller driver boards such as 
relay modules via wired communication ports such as I2C, 
USART, and SPI, or by means of WiFi wireless signals. The 
control commands can be generated by the crop growth 
models that have been implemented in the processor as codes 
or Simulink blocks. Furthermore, the controller is capable of 
receiving command signals from cloud-based applications. 
Concurrently, environmental sensors are attached to collect 
measurements, storing data on an SD card, and transmitting 
data either directly to a web server or through wireless 
communication to a gateway utilizing LoRa modulation. An 
in-depth elucidation of this framework pertaining to 
greenhouse tomatoes is provided in (Shamshiri et al., 
2020; Rezvani et al., 2020).
7.6 IoT-based monitoring in remote locations
These sensors are employed for IoT monitoring of various 
agricultural parameters, including air and soil temperature, 
relative humidity, soil moisture, leaf wetness, light conditions, 
and dew-point temperature. Using solar power, these sensors 
offer a sustainable solution for remote monitoring, ensuring 
battery charging for continuous data collection and 
transmission without relying on frequently battery 
replacement. In small-scale fields, the costs associated with 
maintenance and ownership may not be justifiable for farmers, 
particularly when concerns arise regarding the potential 
sharing of sensitive field information and the associated risks 
to their production reputation due to inadequate IoT security 
protocols. The differences between hardware and software 
from different manufacturers imply heterogeneity in wireless 
communication protocols and connectivity standards, making 
it difficult to integrate and standardize the IoT automation 
process. Additionally, there is currently a lack of 
standardization and regulation in the IoT industry, which can 
lead to confusion and complexity when implementing IoT 
devices in agriculture. Therefore, implementation and 
maintenance of IoT in commercial farms can be expensive and 
require significant investment in hardware, software, and 
network infrastructure. Moreover, the reliability of IoT-based 
automation systems in agriculture is significantly influenced 
by the harsh environmental conditions and varying climatic 
characteristics, such as high temperatures, wind speeds, heavy 
rain, and dusty environments, which can damage sensors or 
disrupt their performance. Consequently, selecting robust 
hardware setups capable of withstanding these conditions is 
paramount. 
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Figure 13: Classification of multidisciplinary approach for 
precision agriculture. (Precision Agriculture (PA) is a 
management strategy that utilizes communication and 
information technology for farm management. It is a key 
to improve productivity by using the best agricultural 
practices and optimal usage of resources. Agriculture faces 
diverse challenges due to soil degradation, climate 
variation, and increasing costs). Sources: Classification of 
multidisciplinary approach for precision agriculture. | 
Download Scientific Diagram
8. Agriculture digitalization 
8.1 5 G network
The 5G network will provide a reliable and secure 
communication infrastructure with low latency capabilities for 
the realization of automated farms (Ma et al., 2017; Khanna 
and Kaur, 2019; Valecce et al., 2019; Tang et al., 2021) with 
AI-robotics. Compared with 4G networks, 5G has a faster 
information transmission rate with higher quality of 
dissemination, which can effectively be used in developing 
smart systems with high-speed data transfer, up to 20 Gbps, 
and can connect more devices per square kilometer (Li and Li, 
2020; Said Mohamed et al., 2021). This is crucial to enable 
robotization and digital agriculture processes. Simultaneous 
use of local mesh and cellular networks can effectively 
address the problems with poor communications, allowing 
growers to have uninterrupted stream of data (Franchi et al., 
2021), including crop yield, soil, fertilization, smart 
monitoring, irrigation management, pesticide applications, 
disease management, autonomous navigation, fruits harvesting 
(Navas et al., 2024), and supply chain management 
(Khujamatov et al., 2021; Friha et al., 2021). An example lies 
in the work of Xue et al. (2021) (Xue et al., 2022), in which a 
frame structure for a drip irrigation remote control system 
(DIRCS) utilizing 5G-IoT technology alongside a mobile 
application was introduced. Additionally, Tang et al. (2021) 
(Tang et al., 2021) demonstrated significant benefits achieved 
through the implementation of IoT, including a 20% reduction 
in labor force, a corresponding 20% decrease in pesticide 
usage, and optimized utilization of water resources and 
fertilizers (Yu et al., 2021). Figure 22 visually depicts various 
applications of the 5G network in digital agriculture, 

illustrating the connectivity links between different sections.  
The deployment of the 5G mobile network is currently 
underway in some developed countries, including the United 
States, the United Kingdom, Germany, South Korea, Japan, 
and China. However, the initiation of 5G network deployment 
in many least developed countries is anticipated to require a 
significantly longer timeframe (Rahman et al., 2021). While 
the 5G network offers advantages in wireless communication, 
ensuring uninterrupted connectivity, there remain substantial 
challenges such as reducing interference, minimizing latency, 
optimizing power consumption, and enhancing data rates (Sah 
et al., 2022). 
8.2. Digital twin (DT) 
Digital Twins are typically accessed through a virtual 
interface, which displays information about the status on the 
‘thing’ Interaction with a Digital Twin would usually be 
through a visual interface on a phone, tablet or computer. This 
would let you see information about the status of the thing, its 
history (e.g. an ewe’s health history) or its predicted future 
(e.g. a crop growth forecast). You are also likely to be able to 
interact with the real-world system through the Digital Twin, 
such as switching on an irrigation system. Digital Twins have 
been used successfully in agriculture for developing 
autonomous farming robots (Foldager et al., 2020), 
identification of plant pests and diseases in crop production 
(Pylianidis et al., 2021), stock monitoring of feed silos of 
livestock farms (Raba et al., 2021), and energy management in 
commercial greenhouses (Ashraf et al., 2021; Chaux et al., 
2021; Howard et al., 2021).Digital twin (DT) is one of the 
trending solutions toward real-time evaluation, optimization, 
and predictive control of complex systemic process, which has 
been successfully implemented in various industrial fields 
including manufacturing (Kritzinger et al., 2018), construction 
(Korenhof et al., 2021), automotive (Vachálek et al., 2017), 
energy (Howard et al., 2020). Originated back in 2003 by 
Michael Grieves (Jones et al., 2020), digital twin is commonly 
described as consisting of real-world entity (i.e., a physical 
product, a process, or a machine component) that is interfaced 
with a virtual replication of that entity (i.e., a simulation 
model) via bi-directional data connections for feeding data and 
exchanging information between the two (Grieves and 
Vickers, 2017). 
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Figure 14: How do you interact with a Digital Twin? 
Sources: 10 things about Digital Twins in agriculture
In this concept, the physical system interacts with the digital 
counterpart within a centralized or cloud-based architecture in 
order to optimize the process, update control parameters, and 
generate predictive solutions for what-if scenarios. It should 
be noted that a system without a connection from the virtual 
object to the physical object is different from digital twin, and 
is called digital shadow (Elahi et al., 2022). Compared to the 
industrial application, the agricultural use of DT is still 
limited, but has a high potential to be expanded in the near 
future. The main use cases of digital twin in agriculture are 
focused on predictive analytics, remote monitoring, resource 
optimization, and risk mitigation (Purcell et al., 2023). 
Examples includes studies on predictive models that simulate 
crop growths and soil conditions in order to improve 
fertilizing and irrigation (Skobelev et al., 2021), or IoT 
monitoring of plants health and environmental conditions and 
simulate difference scenarios such as disease outbreaks to 
mitigate potential losses (Tekinerdogan and Verdouw, 2020). 
8.3 Blockchain Technology
Blockchain can be used to create a digital ledger that records 
all of the data generated by sensors and controllers. 
Blockchain is an emerging digital technology that has the 
potential to revolutionize the way farming and food 
production is conducted by creating a decentralized and secure 
network, contributing to better transparency, traceability, and 
efficiency in the agricultural supply chain. This data can then 
be used to make more informed decisions about planting, 
fertilizing, and harvesting crops. For example, growers can use 
blockchain-based smart contracts to automatically adjust the 
amount of fertilizer used in their fields by considering the 
soil’s nutrient content in order to reduce the amount needed 
and minimize environmental impact. A key application of this 
technology in digital agriculture is supply chain traceability, 
which means creating a digital ledger that records the entire 
history of a product, from farm to consumer. This can help to 

improve food safety, reduce the risk of fraud by tracking the 
origin of products, and ensure that they meet certain quality 
standards. Such information is required to improve the 
efficiency of supply chains, as it allows for better tracking of 
inventory and logistics. Another potential application of 
blockchain technology in agricultural robotics is the use of 
autonomous drones and other robots. Blockchain can be used 
to create a secure and decentralized network that allows 
drones and robots to communicate and share data in real-time. 
This can help to improve efficiency, reduce costs, and 
minimize human error in the agricultural supply chain. For 
example, drones can be used to survey crops and identify areas 
that require attention, while robots can be used to perform 
tasks such as planting, harvesting, and maintaining equipment. 
In addition to these applications, blockchain technology can be 
used to improve the way that agricultural land is managed. 
Additionally, blockchain can be used to create a digital record 
of land use, making it easier for farmers to access government 
subsidies and other benefits. In addition, it can help to reduce 
environmental impact, optimize crop yields, and increase 
revenue potential for farmers. This is particularly important in 
countries where land ownership records are often poorly 
maintained or subject to corruption. 

Figure 15: Blockchain Technology, everything you need to 
know. Sources: Blockchain Technology, everything you 
need to know. Sources: Blockchain Technology, everything 
you need to know - Crypto Economy
9. Economic, social, and technical considerations
While the highlighted technological solutions play a 
significant role in the digitalization of agriculture, there exists 
several limitations and barriers such as high costs that farmers, 
especially those operating on tighter budgets, must address to 
ensure broad acceptance, adoption, and utilization. For 
example, farmers should consider the return on investment 
(ROI) (Griffin et al., 2018) associated with deploying 
expensive 5G infrastructure (van Hilten and Wolfert, 2022), 
autonomous electric tractors and robots (Rose et al., 2021), 
and IoT devices (Liu and Wu, 2021), alongside exploring 
potential subsidies or financial support mechanisms. For ROI 
calculations, factors such as reduced labor costs, optimized 
resource utilization (such as water and fertilizers) (Sandor et 
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al., 2022), minimized waste, and enhanced decision-making 
should be taken into account. Robotics, wireless automation, 
and live monitoring systems can provide excellent insights 
into crop health to prevent losses, as well as targeted 
application of inputs for cost savings and yield improvements. 
Therefore, calculating the ROI should involve evaluating not 
only the initial investment but also the long-term savings and 
increased productivity they offer. In addition, challenges 
related to the reliability and scalability of current technologies 
pose significant concerns to their widespread adoption. 
Looking to the future, potential breakthroughs in digital 
agriculture involve advancements in AI and machine learning 
algorithms for predictive modeling and decision support 
(Aworka et al., 2022), the integration of Blockchain 
technology for transparent and traceable supply chains 
(Kamilaris et al., 2019), and the development of biotechnology 
solutions for crop improvement and pest management 
(Steinwand and Ronald, 2020). Additionally, the continued 
expansion of rural connectivity and the adoption of 5G 
technology is expected to further accelerate the digital 
transformation, enabling real-time data exchange even in 
remote areas. This can divide and widen socioeconomic 
inequalities within rural communities, reinforcing disparities 
between large commercial farms and small-scale or 
subsistence farmers. Preserving and honoring these cultural 
legacies while simultaneously embracing innovation pose a 
delicate balancing act for rural communities undergoing 
digital transformation. To this aim, developing robots, sensors, 
mobile apps, and software that are compatible with low-
resource settings and support multiple languages, or 
organizing community-based hands-on workshops, peer-to-
peer learning networks, and collaboration between research 
institutions for enhancing digital literacy will accelerate the 
accessibility of technology to a broader range of farmers 
irrespective of their geographic location or socioeconomic 
status.
10. Conclusion and Summary
The digitalization of agriculture is revolutionizing the way 
crops are produced and food is secured. The use of cutting-
edge technologies such as robotics, computer vision, IoT, 5G, 
digital twin, and blockchain has allowed farmers to make 
more informed decisions, optimize crop yields, and reduce 
costs. This has led to more sustainable and efficient 
agriculture, which is crucial for ensuring food security in an 
increasingly populated world. The use of robotics in 
agriculture has increased efficiency and reduced labor costs, 
while computer vision and IoT have allowed for real-time 
monitoring and data collection. Whether it is through the use 
of drones for crop scouting, autonomous tractors for tilling 
and planting, or robot manipulators for harvesting, agricultural 
robots are changing the way farming activities have been 
conducted for decades. The integration of 5G networks has 

improved connectivity and data transfer speeds, making it 
easier for farmers to access information and make decisions. 
Future trends in this field shows that new concepts such as 
digital twin allows for virtual testing and simulations, 
providing a cost-effective way for farmers to make informed 
decisions. In addition, blockchain technology has the potential 
to improve traceability and food safety by providing a secure 
and transparent way to track the movement of crops from the 
farm to the consumer. However, the widespread adoption of 
these technologies in agriculture is not without its challenges 
and limitations. Network coverage and connectivity, data 
management and storage, security and privacy, cost, 
interoperability and integration, and regulation and standards 
are just some of the challenges that were highlighted in this 
paper that need to be overcome. To address these challenges 
and promote the acceptance of digital technologies in 
agriculture, it is important for all stakeholders, including 
governments, industry, and the research community, to 
collaborate and work together. Governments can play a key 
role by providing funding and support for the development 
and implementation of these technologies. Industry can help 
by investing in research and development and providing 
solutions to the challenges faced by farmers. The research 
community can contribute by conducting studies to better 
understand the limitations and challenges of these 
technologies and exploring new and innovative solutions. In 
conclusion, with the right support and investments, digital 
agriculture has the potential to make a significant contribution 
to transform crop production into a more sustainable and 
efficient system that can ensure food security for generations 
to come. Future studies may involve analyzing of the socio-
economic impacts of digital technologies in agriculture, such 
as the impacts of digitalization on farmers and rural 
communities, the accessibility and affordability of the existing 
solutions, and the policies and regulations that support or 
hinder the adoption of future developments.
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