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1. Introduction 

Using traditional classical approaches is not always successful since there are many kinds of 

uncertainties and ambiguity, either inherent in the data or caused by the mathematical 

techniques employed to solve the model's complex problems. Probability theory, fuzzy set 

theory [17], intuitionistic fuzzy set theory [3], vague set theory [9], rough set theory [14], and 

interval of mathematics ([4], [10]) are some mathematical theories that can be used to deal 

with uncertainty. The methods employed to quantify objects in these theories have 

limitations. 

To overcome this, in 1999, Molodtsov proposed [12], soft sets as a mathematical tool for 

dealing with uncertainties associated with real world data-based problems. It offers sufficient 

tools to handle data uncertainties and display it in a usable manner. This theory has 

successfully addressed the issue of inadequate parameters. 

Alam and Imdad [2] introduced a version of the Banach contraction principle using a 

relation-theoretic approach. This formulation extends and generalizes several well-known 

fixed point theorems based on order theory. 

Ahmadullah et al. [1] has explored several concepts of binary relation for non-linear 

contractions. 

Molodtsov et al. [13] has developed applications of soft set and soft theory in various fields, 

such as smoothness of functions, game theory, operations research etc. 
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Maji et al. [11] has introduced and explored several fundamental concepts in soft set theory, 

providing a comprehensive understanding of its principles. 

Cagman and Enginoglu [5] has conducted research on the products of soft sets and uni-int 

decision functions. 

Sezgin and Atagun [15] has extended the theoretical aspects of operations on soft sets by 

exploring the De Morgan’s laws in soft set theory with respect to different operations. 

Shabir and Naz [16] pioneered the investigation of soft topological spaces and showed that a 

soft topological space corresponds to a parameterized family of topological spaces. 

Das and Samanta [6-7] introduced the notion of soft real sets and soft real numbers and 

studied various properties of soft real sets and numbers. After that, they introduced a notion 

of a soft metric space which is defined over an initial universe with fixed set of parameters. 

In this paper, the contraction condition in soft metric spaces is comparatively weaker than the 

usual contraction by introducing binary relation in soft metric spaces, as it is required to hold 

only on those elements which are related under the underlying relation, rather than applying 

to the entire space. 

“Definition 1.1. [12] Let 𝐻 be an initial universe set and 𝐾 be a non-empty set of parameters. 

Let 𝑃(𝐻) denotes the power set of 𝐻. A pair (𝐹, 𝐾) is called a soft set over 𝐻, where 𝐹 is 

mapping given by 𝐹 ∶ 𝐾 → 𝑃(𝐻). 

In other words, soft set over 𝐻 is a parameterized family of subsets of universe 𝐻. For 

𝑎 C 𝐾, 𝐹(𝑎) may be considered as the set of 𝑎-approximate elements of the soft set (𝐹, 𝐾), or 

as the set of 𝑎-approximate elements of the soft set.” 

“Definition 1.2. [11] A soft set (𝐹, 𝐾) over 𝐻 is said to be a null soft set denoted by Φ if for 

all 𝑎 ∈ 𝐾, 𝐹(𝑎) = Φ.” 

“Definition 1.3. [11] A soft set (𝐹, 𝐾) over 𝐻 is said to be an absolute soft set denoted by 𝐻̃ 

if for all ∈ 𝐾, 𝐹(𝑎) = 𝐻.” 

“Definition 1.4. [8] Let (𝐹, 𝐴) and (𝐺, 𝐵) be two soft sets over 𝐻. We say that (𝐹, 𝐴) is a soft 

subset of (𝐺, 𝐵) and denote it by (𝐹, 𝐴) ⊂̃  (𝐺, 𝐵) if 

(i) 𝐴 ⊂ 𝐵, and 

(ii) 𝐹(𝑎) ⊆ 𝐺(𝑎), for all 𝑎 ∈ 𝐴. 

(𝐹, 𝐴) is said to be a soft super set of (𝐺, 𝐵), if (𝐺, 𝐵) is a soft subset of (𝐹, 𝐴). We denote it 

by (𝐹, 𝐴) ⊃̃  (𝐺, 𝐵).” 
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“Definition 1.5. [6] Let 𝐻 be a non-empty set and 𝐾 be a non-empty set of parameters. Then 

a function 𝗌 ∶ 𝐾 → 𝐻 is said to be a soft element of 𝐻. A soft element 𝗌 of 𝐻 is said to belong 

to a soft set 𝐹 of 𝐻, denoted by 𝗌  ⏞∈  𝐹, if 𝗌(e) ∈ 𝐹(e), for all e ∈ 𝐾. 

In that case 𝗌 is also said to be a soft element of the soft set 𝐹. Thus, for a soft set 𝐹 of 𝐻 with 

respect to the index set 𝐾, we have 𝐹(e) = {𝗌(e), 𝗌 ⏞∈ 𝐹}, e ∈ 𝐾. 

It is to be noted that every singleton soft set (a soft set (𝐹, 𝐾) for which 𝐹(e) is a singleton 

set, for all e ∈ 𝐾) can be identified with a soft element by simply identifying the singleton set 

with element that contains for all e ∈ 𝐾.” 

“Definition 1.6. [6] Let ℝ be the set of real numbers, &(ℝ)be the collection of all non-empty 

bounded subsets of ℝ and 𝐾 be taken as set of parameters. Then a mapping 𝐹 ∶  𝐾  → &(ℝ) 

is called a soft real set. It is denoted by (𝐹, 𝐾). If (𝐹, 𝐾) is a singleton soft set, then it will be 

called a soft real number and denoted by 𝑟̃, 𝑠̃, 𝑡 ̃etc. Here 𝑟̃, 𝑠̃, 𝑡 ̃will denote a particular type 

of  soft  real  numbers  such  that  𝑟̃(𝑎) = 𝑟,  for  all  𝑎 ∈ 𝐾.  0̃  and  1̃  are  the  soft  real  numbers 

where 0̃(𝑎) = 0, 1̃(𝑎) = 1 for all 𝑎 ∈ 𝐾, respectively.” 

“Definition 1.7. [6] Let 𝑟̃, 𝑠 ̃ be two soft real numbers, then the following statements hold 

(i)  𝑟̃   ≤̃   𝑠̃, if 𝑟̃(𝑎)  ≤  𝑠̃(𝑎), for all 𝑎 ∈ 𝐾, 

(ii) 𝑟̃   ≥̃   𝑠̃, if 𝑟̃(𝑎)  ≥  𝑠̃(𝑎), for all 𝑎 ∈ 𝐾, 

(iii) 𝑟̃   <̃   𝑠̃, if 𝑟̃(𝑎)  <  𝑠̃(𝑎), for all 𝑎 ∈ 𝐾, 

(iv) 𝑟̃   >̃  𝑠̃, if 𝑟̃(𝑎)  > 𝑠̃(𝑎), for all 𝑎 ∈ 𝐾.” 

“Note Let 𝐻 be a non-empty set and 𝐾 be the non-empty set of parameters. Let 𝐻̃ 

be the absolute soft set i.e., 𝐹(𝜆) =  𝐻, for all λ ∈ 𝐾, where (𝐹, 𝐾)  = 𝐻̃. 

Let 𝑆𝐸(𝐻̃)  be the collection of all soft elements of 𝐻  and ℝ(E)∗  denote the set of all non- 

negative soft real numbers.” 

“Definition 1.8. [7] A mapping ℮ ∶ 𝑆𝐸(𝐻̃) × 𝑆𝐸(𝐻̃) → ℝ(E)∗, is said to be a soft metric on 

soft set 𝐻̃ if ℮ satisfies the following conditions 

(i)  ℮(𝑢, 𝜔̃) ≥̃  0̅, for all 𝑢, 𝜔̃  ⏞∈  𝐻̃. 

(ii) ℮(𝑢, 𝜔̃) = 0̅ if and only if 𝑢̃ =  𝜔̃. 

(iii) ℮(𝑢̃, 𝜔̃) =  ℮(𝜔̃, 𝑢), for all 𝑢̃, 𝜔̃  ⏞∈  𝐻̃. 

(iv) ℮(𝑢̃, 𝜔̃)  ≤̃  ℮(𝑢̃, 𝜇) + ℮(𝜇, 𝜔̃), for all 𝑢, 𝜔̃, 𝜇  ⏞∈  𝐻̃. 

The soft set 𝐻̃  with a soft metric ℮ on 𝐻̃ is said to be a soft metric space and is denoted be 

(𝐻̃, ℮, 𝐾) or (𝐻̃, ℮).” 
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“Definition 1.9. Let (𝐹, 𝐾) be a soft set over 𝐻. A soft sequence in (𝐹, 𝐾) is a function ƒ ∶ 

ℕ  → (𝐹, 𝐾) by setting ƒ(5) = (𝑢̃𝑦, 𝐾) such that (𝑢̃𝑦, 𝐾) is a subset of (𝐹, 𝐾)   for 5  ∈  ℕ, and 

we denote it by {(𝑢̃𝑦, 𝐾)}.” 

“Definition 1.10. Let {𝑢̃𝑦} be a sequence of soft elements in a soft metric space (𝐻̃, ℮). The 

sequence {𝑢̃𝑦} is said to be convergent in (𝐻̃, ℮) if there is a soft element 𝑢̃  ⏞∈  𝐻̃ such that 

℮(𝑢̃𝑦, 𝑢̃) → 0̅ as 5 → ∞. 

This  means  for  every  𝗌̃  >̃   0̅,  chosen  arbitrarily,  there  exists  a  natural  number  𝑁 = 𝑁(𝗌̃), 

such that 

0̅   ≤̃   ℮(𝑢̃𝑦, 𝑢)  ≤̃   𝗌̃, whenever 5 > 𝑁. 

We  denote this by  𝑢̃𝑦   →  𝑢̃    as  5 → ∞   or  by   lim 
𝑦→ ∞ 

𝑢̃𝑦  =  𝑢.  𝑢̃ is  said  to  be the  limit  of  the 

sequence 𝑢̃𝑦  as 5 → ∞.” 

“Definition 1.11. A sequence {𝑢̃𝑦} of soft elements in (𝐻̃, ℮) is said to be bounded if the set 

{℮(𝑢̃𝑚, 𝑢̃𝑦): 𝑚, 5   ∈ 𝑁}  of  soft  real  numbers  is  bounded,  i.e.,  there  exists  𝑀̅  >̃   0̅  such  that 

℮(𝑢̃𝑚, 𝑢̃𝑦)  ≤̃   𝑀̅, for all 𝑚, 5  ∈ 𝑁.” 

“Definition 1.12. A sequence {𝑢̃𝑦} of soft elements in (𝐻̃, ℮) is said to be Cauchy sequence 

in 𝐻̃  if corresponding to every 𝗌̃  >̃   0̅, there exists 𝑚  ∈ 𝑁  such that ℮(𝑢̃𝑟, 𝑢̃j) ≤̃  𝗌̃, ∀ 𝑟, j  ≥ 

𝑚 i.e., ℮(𝑢̃𝑟, 𝑢̃j) → 0̅ as 𝑟, j →  ∞.” 

“Definition 1.13. A soft metric space (𝐻̃, ℮) is said to be complete if every Cauchy sequence 

in 𝐻̃ converges to some soft element of 𝐻̃. The soft metric space (𝐻̃, ℮) is called incomplete 

if it is not complete.” 

“Definition 1.14. Let (𝐻̃, ℮) be a soft metric space. We can consider 𝐻̃  as the collection of 

all  soft  elements  of  𝐻̃ with  respect  to  a  non-empty  set  of  parameters  𝐾.  Let  ƒ ∶  (𝐻̃, ℮) → 

(𝐻̃, ℮)  be a mapping. If there exists a soft element 𝑢0 ∈̃  𝐻̃ such that ƒ(𝑢̃0) = 𝑢̃0, then 𝑢̃0  is 

called a fixed element of ƒ.” 

“Definition 1.15. [11] Let (𝐹, 𝐴) and (𝐺, 𝐵) be two soft sets over 𝐻, then the Cartesian 

product of (𝐹, 𝐴) and (𝐺, 𝐵) is defined as (𝐹, 𝐴) × (𝐺, 𝐵) = (𝑆, 𝐴 × 𝐵), where 𝑆 ∶ 

𝐴 × 𝐵 → 𝑃(𝐻 × 𝐻) and 𝑆(𝑎, 𝑏) = 𝐹(𝑎) × 𝐺(𝑏) for all (𝑎, 𝑏) ∈ 𝐴 × 𝐵.” 

“Definition 1.16. Let (𝐹, 𝐴) and (𝐺, 𝐵) be two soft sets over 𝐻, then a relation from (𝐹, 𝐴) to 

(𝐺, 𝐵) is a soft subset of (𝐹, 𝐴) × (𝐺, 𝐵).” 
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“Definition 1.17. Let (𝐻̃, ℮) be a soft metric space. We can consider 𝐻̃  as the collection of 

all soft elements of 𝐻̃ with respect to a parameter set 𝐾. A mapping 𝑃 ∶  (𝐻̃, ℮) → (𝐻̃, ℮) is 

said  to  be  a  contraction  mapping  in  (𝐻̃, ℮)  if  there  is  positive  soft  real  number  ð̃  with 0̅  

<̃  ð̃ <̃   1̅, such that  ℮(𝑃(𝑢), 𝑃(𝜔̃)) <̃  ð̃ ℮(𝑢, 𝜔̃), for all 𝑢, 𝜔̃  ⏞∈  𝐻̃.” 

“Definition 1.18. Let (𝐻̃, ℮) be a soft metric space and 𝑃 ∶ (𝐻̃, ℮) → (𝐻̃, ℮) a mapping. For 

every  𝑢0  ∈  𝑆𝐸(𝐻̃),  we  can  construct  the  sequence  𝑢̃𝑦  of  soft  element  by  choosing  𝑢0  and 

continuing by 

𝑢1 = 𝑃(𝑢̃0), 𝑢̃2 =  𝑃(𝑢̃1) = 𝑃2(𝑢0),…..,𝑢̃𝑦  = P(𝑢̃𝑦−1) =  𝑃𝑦(𝑢̃0). 

We say that the sequence is constructed by iteration method.” 

2. Main Results 

In this section, we shall prove some results in soft metric space by using binary relation. 

Definition 2.1. Let 𝐻  be a non-empty absolute soft set. A subset 𝑍  of 𝐻̃2  is called a binary 

relation on 𝐻̃. 

For each pair 𝑢̃, 𝜔̃   ∈  𝐻̃,  either one of the following conditions are satisfied 

(i) (𝑢̃, 𝜔̃)  ∈  𝑍; which can be restated as “𝑢̃   is 𝑍-related to 𝜔̃” or “𝑢̃ relates to 𝜔̃ under 

𝑍”. Sometimes, we write 𝑢̃𝑍𝜔̃ instead of (𝑢̃, 𝜔̃)  ∈ 𝑍. 

(ii) (𝑢̃, 𝜔̃)  ∉  𝑍;  which  means  that  “𝑢̃ is  not  𝑍-related  to  𝜔̃”  or  “𝑢  does  not  relate  to  𝜔̃ 

under 𝑍”. 

Since 𝐻̃2  and Φ  are subsets of 𝐻̃2. Therefore,  𝐻̃2  and Φ  are always binary relations on 𝐻̃, 

which are respectively called the universal relation and void relation. 

In this paper, 𝑍 denotes non-empty binary relation, but for the sake of convenience, we use 

only “binary relation” instead of “non-empty binary relation”. 

Definition 2.2. Let a binary relation 𝑍 defined on a non-empty absolute soft set 𝐻̃ and 𝑢̃, 𝜔̃  ∈ 

𝐻̃. We say that 𝑢̃ and 𝜔̃ are 𝑍- comparative if either (𝑢̃, 𝜔̃) ∈ 𝑍 or (𝜔̃, 𝑢) ∈ 𝑍. We denote it by 

[𝑢̃, 𝜔̃] ∈ 𝑍. 

Proposition 2.3. Let (𝐻̃, ℮) is a soft metric space, 𝑃 is a self-mapping on 𝐻̃, binary relation 

𝑍 defined on 𝐻̃ and 0̅  <̃  ð̃ <̃   1̅, then the following contractive conditions are equivalent: 

(i)  ℮(𝑃𝑢̃, 𝑃𝜔̃) ≤  ð̃ ℮(𝑢̃, 𝜔̃), for all 𝑢, 𝜔̃ ∈  𝐻̃ with (𝑢̃, 𝜔̃) ∈ 𝑍, 

(ii) ℮(𝑃𝑢̃, 𝑃𝜔̃) ≤  ð̃ ℮(𝑢̃, 𝜔̃), for all 𝑢, 𝜔̃ ∈  𝐻̃ with [𝑢̃, 𝜔̃]  ∈  𝑍. 

Proof First assume that (i) holds. 

Take 𝑢̃, 𝜔̃  ∈  𝐻̃ with [𝑢̃, 𝜔̃]  ∈  𝑍. 

If (𝑢̃, 𝜔̃) ∈ 𝑍, then (ii) directly follows from (i). 
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Otherwise, if (𝜔̃, 𝑢̃) ∈ 𝑍, using property of soft metric ℮ and (i), we obtain 

℮(𝑃𝑢̃, 𝑃𝜔̃) =  ℮(𝑃𝜔̃, 𝑃𝑢̃) ≤  ð̃ ℮(𝜔̃, 𝑢̃) =  ð̃ ℮(𝑢̃, 𝜔̃). 

This show that (i) ⇒ (ii). 

Conversely, inequality (ii) trivially implies (i). 

Definition 2.4. Let 𝐻̃ be a non-empty absolute soft set and binary relation 𝑍 defined on 𝐻̃. 

(i) The inverse relation of 𝑍, denoted by 𝑍−1, is defined by 

𝑍−1 = {(𝑢, 𝜔̃) ∈ 𝐻̃2: (𝜔̃, 𝑢̃) ∈ 𝑍}. 

(ii) Let 𝑍𝑠 be symmetry closure of 𝑍 and is defined to be the set 𝑍 𝖴 𝑍−1. Indeed, 𝑍𝑠 is 

the smallest symmetric relation on 𝐻̃ containing on 𝐻̃. 

Proposition 2.5. For a binary relation 𝑍 defined on a non-empty set 𝐻̃, 

(𝑢̃, 𝜔̃) ∈ 𝑍𝑠  ⇔ [𝑢̃, 𝜔̃] ∈ 𝑍. 

Proof Consider (𝑢̃, 𝜔̃) ∈ 𝑍𝑠  ⇔ [𝑢̃, 𝜔̃] ∈ 𝑍 𝖴 𝑍−1 

- (𝑢, 𝜔̃) ∈ 𝑍 o𝑟 (𝑢̃, 𝜔̃) ∈ 𝑍−1 

- (𝑢̃, 𝜔̃) ∈ 𝑍 o𝑟 (𝜔̃, 𝑢̃) ∈ 𝑍 

- [𝑢̃, 𝜔̃] ∈ 𝑍. 

Definition 2.6. Let 𝐻̃ be a non-empty absolute soft set and binary relation 𝑍 defined on 𝐻̃. A 

sequence {𝑢𝑦} ⊂ 𝐻̃ is called 𝑍-preserving if 

(𝑢𝑦, 𝑢𝑦+1) ∈ 𝑍, for all 5 ∈ ℕ0 = ℕ 𝖴 {0}. 

Definition 2.7. Let (𝐻̃, ℮, 𝐾) be a complete soft metric space, 𝑍 a binary relation defined on 

𝐻̃ is called ℮-self closed if whenever {𝑢𝑦} is 𝑍-preseving sequence and 

℮ 

𝑢𝑦  → 𝑢̃, 

then there exists a subsequence {𝑢𝑦𝑙} of {𝑢̃𝑦} with [𝑢̃𝑦𝑙 , 𝑢] ∈ 𝑍 for all 𝑙 ∈ ℕ 𝖴 {0}. 

Definition 2.8. Let  𝐻̃  be  a non-empty set and  𝑃  a  self-mapping on  𝐻̃.  A binary relation 𝑍 

defined on 𝐻̃ is called 𝑃- closed if for any 𝑢̃, 𝜔̃ ∈ 𝐻̃, 

(𝑢̃, 𝜔̃) ∈ 𝑍 ⇒  (𝑃𝑢̃, 𝑃𝜔̃) ∈ 𝑍. 

Proposition 2.9. Let 𝐻̃  be a non-empty absolute soft set and 𝑃  be a self-mapping on 𝐻̃.  A 

binary relation 𝑍 defined on 𝐻̃ is 𝑃-closed, then 𝑍𝑠  = 𝑍  𝖴  𝑍−1 is also 𝑃-closed. 

Definition 2.10. Let 𝐻̃  be a non-empty absolute soft set and binary relation 𝑍 defined on 𝐻̃. 

A  subset  𝐾  of  𝐻̃ is  called  𝑍-directed  if  for  each  𝑢̃, 𝜔̃ ∈ 𝐾,  there  exists  𝜇 ∈ 𝐻̃  such  that 

(𝑢̃, 𝜇) ∈ 𝑍 and (𝜔̃, 𝜇) ∈ 𝑍. 
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Definition 2.11. Let 𝐻̃  be a non-empty absolute soft set and binary relation 𝑍  defined on 𝐻̃. 

For  𝑢̃, 𝜔̃  ∈ 𝐻̃,  a path of length 𝑙  (where 𝑙  is a natural number) in  𝑍  from  𝑢̃  to 𝜔̃  is a finite 

sequence {𝜇0, 𝜇1, 𝜇2, … , 𝜇𝑙} ⊂ 𝐻̃ satisfying the following conditions 

(i)  𝜇0 = 𝑢 and 𝜇𝑙  = 𝜔̃, 

(ii) (𝜇𝑟, 𝜇𝑟+1) ∈ 𝑍 for each 𝑟 (0 ≤ 𝑟 ≤ 𝑙 − 1). 

In this paper, we use the following notations 

(i) 𝐹(𝑃) = the set of all fixed point of 𝑃, 

(ii) 𝐻̃(𝑃;  𝑍) ∶= {𝑢̃ ∈ 𝐻: (𝑢̃, 𝑃𝑢̃) ∈ 𝑍}, 

(iii) Υ(𝑢̃, 𝜔̃, 𝑍) ≔ the class of all paths in 𝑍 from 𝑢̃ to 𝜔̃ 

Theorem 2.12. Let (𝐻̃, ℮, 𝐾) be a complete soft metric space, binary relation 𝑍 on 𝐻̃ and 𝑃 a 

self-mapping on 𝐻̃. Assume that the following conditions are satisfied 

(i) 𝐻̃(𝑃;  𝑍 ) is non-empty, 

(ii) 𝑍 is 𝑃-closed, 

(iii) Either 𝑃 is continuous or 𝑍 is ℮-self closed. 

(iv) There exists ð˜ ∈ [0, 1) such that 

℮(𝑃𝑢̃, 𝑃𝜔̃) ≤  ð̃ ℮(𝑢̃, 𝜔̃), for all 𝑢̃, 𝜔̃  ⏞∈  𝐻̃ with (𝑢̃, 𝜔̃) ∈ 𝑍. 

Then 𝑃 has a fixed point. 

Moreover, if 

(v) Υ(𝑢̃, 𝜔̃, 𝑍𝑠) is non-empty, for each 𝑢̃, 𝜔̃  ∈⏞  𝐻̃. 

Then 𝑃 has a unique fixed point. 

Proof Let 𝑢̃0 be an arbitrary element of 𝐻̃(𝑃; 𝑍). 

Let  {𝑢̃𝑦} be defined by recursive relation 𝑢̃𝑦  = 𝑃𝑦(𝑢̃0), for all 5 ≥ 0. 

As (𝑢0, 𝑃𝑢̃0) ∈ 𝑍, using (𝑃𝑢̃0, 𝑃2𝑢0), (𝑃2𝑢0, 𝑃3𝑢̃0), ..., (𝑃𝑦𝑢̃0, 𝑃𝑦+1𝑢̃0),…, ∈ 𝑍, 

so that (𝑢̃𝑦, 𝑢̃𝑦+1) ∈ 𝑍, for all 5 ∈ ℕ0 . 

(2.1) 

Thus, the sequence {𝑢𝑦} is 𝑍-preserving. 

Applying the contractive condition (iv) to (2.1), we deduce that, 

℮(𝑢̃𝑦+1, 𝑢̃𝑦+2 ) ≤ ð̃ ℮(𝑢̃𝑦, 𝑢̃𝑦+1), for all 5 ∈ ℕ0. 

By principle of mathematical induction, we have 

℮(𝑢̃𝑦+1, 𝑢̃𝑦+2 ) ≤ ð̃𝑦+1  ℮(𝑢0, 𝑃𝑢̃0), for all 5 ∈ ℕ0. 

(2.2) 

Using (2.2) and triangular inequality, for all 5 ∈ ℕ0,  𝑝  ∈ ℕ, 𝑝 ≥ 2, we have 
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𝑙=1 

𝑟=0 

𝑟=0 

𝑟=0 

℮

℮(𝑢̃𝑦+1,  𝑢̃𝑦+𝑝)  ≤ ℮(𝑢̃𝑦+1,  𝑢𝑦+2 ) +  ℮(𝑢̃𝑦+2,  𝑢̃𝑦+3) + ⋯ + ℮(𝑢̃𝑦+𝑝−1, 𝑢𝑦+𝑝) 

≤ ( ð̃𝑦+1  +  ð̃𝑦+2  +  ð̃𝑦+3  + ⋯ +  ð̃𝑦+𝑝−1) ℮(𝑢̃0, 𝑃𝑢̃0) 

 

 
this implies, 

=   ð̃𝑦℮( 𝑢̃0, 𝜔̃0) ∑𝑝−1  ð̃𝑙 → 0 as 5 → ∞, 

the sequence {𝑢𝑦} is Cauchy sequence in 𝐻̃. 

As (𝐻̃, ℮, 𝐾) is complete soft metric space, there exists 𝑢̃  ∈  𝐻̃ such that  ̃  ˜. 
𝑢𝑦 → 𝑢 

Using assumption (iii), we have 
℮ 

𝑢̃𝑦+1 = 𝑃(𝑢̃𝑦) →  𝑃(𝑢̃). 

As a result of uniqueness of limit, we get 𝑃(𝑢̃) =  𝑢̃, 

this implies, 

𝑢̃ is a fixed point of 𝑃. 

To prove uniqueness, take 𝑢̃, 𝜔̃   ∈ 𝐹(𝑃). 

i.e., 𝑃(𝑢̃) =  𝑢 and 𝑃(𝜔̃) =  𝜔̃. 

(2.3) 

By  condition  (v),  there  exists  a  path  (𝑠𝑎𝑦 {𝜇0, 𝜇1, 𝜇2, … , 𝜇𝑙})  of  some  finite  length  𝑙 in  𝑍𝑠 

from 𝑢̃  to 𝜔̃ so that 

𝜇0  = 𝑢, 𝜇𝑙  =  𝜔̃, [𝜇𝑟, 𝜇𝑟+1]  ∈  𝑍 for each 𝑟 (0 ≤ 𝑟 ≤ 𝑙 − 1). 

(2.4) 

As 𝑍 is 𝑃- closed, by using Proposition 2.9, we have 

[𝑃𝑦𝜇𝑟,  𝑃𝑦𝜇𝑟+1] ∈  𝑍 for each 𝑟 (0 ≤ 𝑟 ≤ 𝑙 − 1) and for each 5 ∈  ℕ0  =  ℕ  𝖴 {0}. 

(2.5) 

Using (2.3), (2.4), (2.5), property of soft metric, condition (iv) and Proposition 2.3, we have 

𝑙−1 

℮(𝑢̃, 𝜔̃) = ℮(𝑃𝑦𝜇0, 𝑃𝑦𝜇𝑙) ≤  ∑ ℮(𝑃𝑦𝜇̃𝑟, 𝑃𝑦𝜇𝑟+1) 

𝑟=0 

≤  ð ∑𝑙−1  ℮(𝑃𝑦−1𝜇𝑟, 𝑃𝑦−1𝜇𝑟+1) 

≤  ð2 ∑𝑙−1  ℮(𝑃𝑦−2𝜇𝑟, 𝑃𝑦−2𝜇𝑟+1) 

≤ 

. 

. 

. 

≤  ð𝑦 ∑𝑙−1 ℮(𝜇𝑟, 𝜇𝑟+1) 

→ 0 as 5 → ∞, 
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so that 𝑢̃ =  𝜔̃. 

Thus, 𝑃 has a unique fixed point. 

Corollary 2.13. Theorem 2.12 remains true if we replace condition (v) by one of the 

following conditions (assuming that the remaining hypotheses holds) 

(i) 𝑍 is complete, 

(ii) 𝐻̃ is 𝑍𝑠- directed. 

Proof If (i) holds, then for each 𝑢, 𝜔̃  ⏞∈  𝐻̃, [𝑢̃, 𝜔̃]  ∈  𝑍, which amounts to saying that {𝑢̃, 𝜔̃} is 

a path of length 1̅ in 𝑍𝑠 from 𝑢̃ to 𝜔̃ so that Υ(𝑢̃, 𝜔̃, 𝑍𝑠) is non-empty. 

Hence, Theorem 2.12 gives rise to conclusion. 

Otherwise, if (ii) holds, then for each 𝑢, 𝜔̃  ⏞∈  𝐻̃, there exists 𝜇  ⏞∈  𝐻̃ such that [𝑢, 𝜇̃ ]  ∈  𝑍 and 

[𝜔̃, 𝜇 ]  ∈  𝑍 so that {𝑢̃, 𝜔̃, 𝜇} is a path from 𝑢̃ to 𝜔̃ is of length 2̅ in 𝑍𝑠. 

Thus, Υ(𝑢̃, 𝜔̃, 𝑍𝑠) is non-empty 𝑢, 𝜔̃  ⏞∈  𝐻̃. 

Again, by Theorem 2.12 also give rise to conclusion. 

Example  2.14.  Let  𝐻̃ =  ℝ  and  ℮(𝑢̃, 𝜔̃) = |𝑢̃ −  𝜔̃|,  then  (𝐻̃, ℮) is  complete  soft  metric 

space. 

Consider a binary relation 𝑍 = {(𝑢, 𝜔̃) ∈  ℝ2 ∶  𝑢̃ −  𝜔̃  ≥  0̅, 𝑢̃  ∈  ℚ} on 𝐻̃ and a mapping 𝑃 ∶ 

𝐻̃ → 𝐻̃ defined by 

𝑃(𝑢) =  3 +  
1  

𝑢̃. 
4 

Clearly, 𝐻̃(𝑃;  𝑍 ) is non-empty, 𝑍 is 𝑃 − closed and 𝑃 is continuous. 

Now, for 𝑢, 𝜔̃  ∈ 𝑍, we have 

℮(𝑃𝑢̃, 𝑃𝜔̃) = |(3 + 
1 

4  
𝑢) −  (3 + 

1 

4  
𝜔̃)| 

= 
1  

|𝑢 −  𝜔̃| 
4 

=  
1  

℮(𝑢̃, 𝜔̃) 
4 

<  
3  

℮(𝑢̃, 𝜔̃). 
5 

i.e., 𝑃 satisfies assumption (iv) of Theorem 2.12 for ð˜ = 
3 

. 
5 

Hence, all the assumptions (i) - (iv) of Theorem 2.12 are holds. 

Then, 𝑃 has a fixed point in 𝐻̃. 

Additionally, condition (v) of Theorem 2.12 also holds. 

Therefore, 𝑃 has a unique fixed point (𝑢 = 4). 
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Example  2.15.  Let  𝐻̃ = [0, 2]  and  usual  soft  metric  ℮(𝑢̃, 𝜔̃) = |𝑢̃ −  𝜔̃|,  then  (𝐻̃, ℮) is 

complete soft metric space. Define a binary relation 𝑍 = {(0̃, 0̃), (0̃, 1̃), (1̃, 0̃), (1̃, 1̃), (0̃, 2̃)} 

on 𝐻̃ and the mapping  : 𝐻̃ → 𝐻̃ defined by 

0̃, iƒ 0 ≤  𝑢̃  ≤ 1 
𝑃(𝑢̃) = { 

1̃, iƒ 1 < 𝑢̃  ≤ 2 

Clearly, 𝐻̃(𝑃;  𝑍 ) is non-empty, 𝑃 is not continuous and 𝑍 is 𝑃 − closed. 
℮ 

Take an 𝑍- preserving sequence {𝑢̃𝑦} such that 𝑢̃𝑦 →  𝑢, 

so that (𝑢𝑦, 𝑢𝑦+1) ∈ 𝑍 for all 5 ∈ ℕ0 = ℕ  𝖴 {0}. 

Since sequence {𝑢𝑦} is 𝑍-preserving. 

Therefore, (𝑢̃𝑦, 𝑢̃𝑦+1) ∉ {(0̃, 2̃)}. 

Now (𝑢̃𝑦, 𝑢̃𝑦+1)  ∈ {(0̃, 0̃), (0̃, 1̃), (1̃, 0̃), (1̃, 1̃)}, for all 5 ∈  ℕ0, which gives to {𝑢𝑦} ⊂̃   {0̃, 1̃}. 

As {0̃, 1̃} is closed, we have [𝑢̃𝑦, 𝑢̃] ∈  𝑍. 

Therefore, 𝑍 is ℮ −self-closed. 

All conditions of Theorem 2.12 from (i) - (iii) are satisfied. 

Now we check (iv) condition, 

℮(𝑃0̃, 𝑃0̃) = ℮(𝑃0̃, 𝑃1̃) = ℮(𝑃1̃, 𝑃0̃) = ℮(𝑃1̃, 𝑃1̃) = ℮(0̃, 0̃) =  0̃ 
 

Therefore, assumption (iv) is satisfied by taking  ð̃ = , for all 𝑢, 𝜔̃  ⏞∈  𝐻̃ with (𝑢̃, 𝜔̃) ∈ 𝑍. 
 

Thus, all the assumptions (i) - (iv) of Theorem 2.12 are satisfied. 

Therefore, 𝑃 has a fixed point in 𝐻̃(𝑢̃ =  0̃). 
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