

Impact Factor 6.1

Journal of Cyber Security

ISSN:2096-1146

Scopus

DOI

Google Scholar

More Information

www.journalcybersecurity.com

Crossref

doi

Google Scholar

scopus

Plant Disease Detection And Treatment Using AI For Modern Agriculture

¹Dr. Pampapathi B M, ²P Harshitha, ³A N R Laaniya, ⁴S Zoya Anjum, ⁵Harshitha Tandle

***¹Associate Professor, Department of Computer Science & Engineering, RYM Engineering College, Ballari, VTU Belagavi, Karnataka, India**

²³⁴Department of Computer Science & Engineering, RYM Engineering College, Ballari, VTU Belagavi, Karnataka, India

ABSTRACT

Plants diseases are one of the hardest challenges in world agriculture where it has traditionally been diagnosed by farmers or experts that perform manual inspection. This traditional method is slow, subjective and erratic, resulting in delays in treatment and considerable loss of crops. With the advent of artificial intelligence, new applications nowadays allow automated, data-driven solutions to optimize agricultural accuracy and efficiency. Here we report an ongoing problem of disease identification being too late and not always accurate due to relying on visual observation and having few experts for consultation.

A solution to these challenges is considered in the proposed system, which utilizes an AI/ML-based model to identify plant disease right from leaf images. The procedure involves application of image pre-processing, feature extraction and deep learning classification algorithm using Convolutional Neural Networks(CNNs) to successfully detect disease types with higher accuracy. Moreover, the system is also equipped with a treatment-recommendation block that associates each determined disease to appropriate cures, providing farmers with an immediate actionable advice. The results indicate that the model can efficiently distinguish healthy leaves and ill ones across various plant species with good accuracy rate; enabling to give a prompt diagnosis and treatment if necessary. With this combination significant reduction of human dependency is achieved and the burden on the crop damage is also reduced, leading to sustainable technology-based farming.

Keywords: Plant disease diagnosis, Artificial Intelligence, Machine Learning, CNN, Image processing, Smart farming, Medication recommendation.

1. INTRODUCTION

Farming animals and crops for sustenance has been the core of human society, playing a significant role in feeding humanity and providing resources as well as economic stability globally. For years the health of crops has mainly been judged by human eyes, with farmers and agricultural experts scrutinising leaves, stems and fruit to spot germs, moulds or rust. As it turns out, this traditional approach served farmers for generations; however, it has several limitations. As it is a visual diagnosis, subjectivity and human error can occur, based on experience as well as the presence of specialists. Where access to professional agronomists is

limited, even common crop diseases can go unnoticed until after severe symptoms have developed, leading to drastic yield reduction and financial impact on the farmer. With the progression of agricultural systems to supply food around the world, accurate, timely and scalable detection of disease has become more important.

Recent developments in the field of Artificial Intelligence (AI) and Machine Learning (ML) have revolutionized more than a few domains by providing automated, data-driven decision-making capabilities. These same techniques in agriculture allow computers to look at plants and analyze their structure from an image, discern patterns that might be overlooked, and even accurately identify diseases that are impossible for the human eye to see. Methods such as image pre-processing, segmentation, and deep learning models especially Convolutional Neural Networks (CNNs) have been quite successful in computing discriminative features from the leaves of the plants which could predict disease categories with high confidence. This technological development represents an evolution from visual inspection to intelligent digital diagnostics, which enable farmers to identify diseases at an early stage and remedy them long before the damage is irreversible.

The proliferation of mobile devices, cheap sensors, and affordable internet connectivity has further driven the adoption of AI-enabled farming instruments. Leaf images are now able to be taken with any smart phone, sent up to the cloud and come back with an answer in seconds. These systems not only automate the disease identification, but also offer personalized treatment advices underpinned by curated knowledge bases with organic and chemical remedies as well as preventive best practices. AI can make advanced diagnostics accessible even to those living in remote areas by bringing real-time decision support to the farmers themselves, bridging the very large gulf between what technology can now do and what currently reaches the field.

Nevertheless, despite the great progress achieved, some problems remain. Plant disease datasets are often of varying qualities because of differences in lighting conditions, background noise and the complicity that symptoms appear across crop species. As such, models should be versatile to fit in various environmental setups and ground truth data sources at the same time they are accurate and robust. Furthermore, it also becomes essential to use AI in agriculture effectively with usability at scale and long-term adaptability to the new pests and diseases. Crucial, then, to practical utility are mechanisms for the system to keep learning from new data and stay on trend across seasons and geographies.

This paper introduces an AI/ML-based plant disease detection and treatment system to solve these problems. The proposed methodology uses deep learning for automatic disease identification along with a recommendation engine, which proposes recommendations of the treatments according to the detected disease. The goal is to help farmers by providing them a tool which is easy, fast and supports sustainable farming practices on how they can increase yield in a natural way. Using a mixture of smart image analysis, modern computational methods and agricultural know-how, this paper is an addition to the emerging field of smart agriculture and highlights AI's capability to promote healthier crops leading to greater food security.

2. LITERATURE SURVEY

In recent years, studies to detect plant diseases have significantly advanced as a result of the wide application of artificial intelligence (AI), and numerous researchers have proposed that deep learning and image-based categorization can be used for agricultural diagnostics. One of the pioneering works in this category is Mohanty et al. (2016), who suggested a deep-learning model to classify plant-diseases based on leaf-images and many big data. They trained convnets on thousands of labeled images in a way that also achieved high performance across all crops. A major milestone in their work was showing that deep learning could achieve expert-level disease diagnosis without the need for carefully crafted features, laying the groundwork for automatic plant pathology solutions. This work sets an important baseline for the present study, demonstrating that such large annotated data set and CNN architectures can enable scalable as well as accurate disease detection.

Sladojevic et al. (2018), further contributed to the field by proposing an in-depth neural network suitably tuned for plant disease detection. They used multiple non-linear hidden layers in their model to extract the texture, shape and color abnormality present in diseased leaves. The results showed remarkable performance in reducing subtle symptoms that are easily ignored by visual comparison. Their work showed that neural networks can generalize to changes in lighting or other background conditions, one problem that had long plagued traditional machine vision methods. Their results reinforce the relevance of deep feature learning and helps to pave the way towards automated and robust classification.

The work of Amara et al. (2017) presented a more sophisticated system by combining deep learning with image preprocessing methods. They normalized the leaf images, segmented the diseased regions and trained a CNN classifier using the segmented dataset. They are able to improve accuracy in classes with visually slight symptoms by adopting pixel-level segmentation before classification. This research is significant in the light of demonstrating that preprocessing and segmentation help in noise reduction, thus enhancing the performance of CNNs. Their work paved the way for hybrid systems that use traditional preprocessing combined with deep learning (as in our approach).

Too et al. (2019) compared the fine-tuned deep learning methodologies, which are such as VGG, ResNet and Inception have been retrained with plant disease datasets. They found that transfer learning could greatly improve the classification accuracy, especially when high-quality labeled samples were scarce. Their approach demonstrates pretrained models can serve as powerful initialisers for agricultural imagery tasks, achieving high accuracy with significantly reduced computational costs. Their findings have practical implications, especially in the field where farmers are unable to offer large datasets, and the importance of transfer learning for application has been further demonstrated.

Brahimi et al. (2017) investigated deep learning for tomato disease detection and developed visualization methods to aid in the interpretation of model reasoning. They employed convolutional networks that did the highlighting of diseased regions in input images by using

Gradient-class Activation Mapping (Grad-CAM). This interpretability enabled agricultural experts to ground truth model predictions and build credibility and acceptance of AI tools. They are valuable contribution as agricultural application systems rely on transparency and visualization-based explanation increases trust in automated diagnostic.

One of the most extensive studies was conducted by Ferentinos (2018), in which a variety of deep learning architectures were evaluated for plant disease images. His approach with the models was to evaluate their performance under test environments similar to those found in reality (e.g. changing our lighting, angles, and leaf position). The accuracy achieved in the study was quite high, suggesting that models based on CNN can be reliable in uncontrolled environments. This study demonstrates the strong performance of deep learning and the importance of training and validating on real-life imaging.

The first research from Rumpf and colleagues (2010) as the first to propose hyperspectral reflectance imaging in combination with SVM for detecting plant diseases. Though predating deep learning their findings demonstrated that spectral signatures before symptomatic presentation are discernible using machine learning, sometimes weeks in advance. Their approach emphasises technical insight for the early detection to guide AI systems in modern direction of disease identification before visible damage is well-established.

Singh et al. (2016) increased machine learning usages, now focusing on high-throughput plant phenotyping. Their approach focused on robotic phenotyping of stress detection in plants by automated trait measurement through image-based ML pipelines. Their approach laid the groundwork for large-template agricultural analysis, showing that machine learning can leverage high volumes of plant data to identify subtle signs of stress. Their contributions are applicable to our study in that they prove the possibility of scaling up automated diagnosis systems beyond small datasets or single-crop scenarios.

More recently, Kamilaris et al., 2018 summarized the state-of-the-art approaches of deep learning in farming and identified the strengths, weaknesses and opportunities of AI-based solutions for crop monitoring. Their results demonstrate that deep learning is always superior to conventional machine learning in disease identification, yield estimation and weeds classification. Their survey gives strong motivation for pursuing AI in combination with farming and supports the technical direction of the current paper.

Finally, Zhang et al. (2018) presented a better CNN model for maize leaf disease identification. To identify these disease characteristics, they modified the convolutional layers and the optimization parameters to adapt identification of such diseases concerning monocot crops. Their findings indicated that customization of the architecture can strongly increase accuracy and showed the relevance of optimization to specific crop types. This observation motivates flexible system for modelling, which further matches with the motivation of our model

3. PROPOSED WORK

The proposed work presents an Artificial Intelligence (AI)-based system for early and accurate detection of plant diseases using image processing and deep learning techniques. The system aims to assist farmers and agricultural experts in identifying crop diseases at an early stage, thereby reducing yield loss and improving overall agricultural productivity.

3.1 System Overview

The proposed system follows a structured pipeline consisting of image acquisition, preprocessing, feature extraction, disease classification, and result visualization. Plant leaf images are captured using smartphones or digital cameras under real-field conditions. These images are then processed and analyzed using a trained deep learning model to detect and classify plant diseases.

3.2 Image Acquisition

Leaf images of healthy and diseased plants are collected from publicly available datasets and real-world agricultural fields. The dataset includes multiple disease categories across different crops to ensure robustness and generalization of the model. Images are stored with appropriate labels for supervised learning.

3.3 Image Preprocessing

To enhance image quality and improve model performance, preprocessing techniques are applied, including:

- Image resizing to a fixed dimension
- Noise removal and normalization
- Contrast enhancement
- Data augmentation techniques such as rotation, flipping, and scaling

These steps help in reducing overfitting and improving model accuracy under varying environmental conditions.

3.4 Feature Extraction and Model Architecture

The proposed system employs a Convolutional Neural Network (CNN) to automatically extract relevant features such as texture, color, and shape from leaf images. Pre-trained deep learning models such as ResNet, VGG, or MobileNet may be utilized through transfer learning to improve efficiency and reduce training time. The extracted features are fed into fully connected layers for classification.

3.5 Disease Classification

The trained model classifies the input image into one of the predefined disease classes or identifies it as a healthy leaf. A softmax activation function is used in the output layer to compute class probabilities. The disease with the highest probability is selected as the final prediction.

4. METHODOLOGY

The proposed approach is aimed at creating a full-fledged pipeline for automatic identification of plant diseases and to suggest the treatment accordingly using AI and ML. As the performance of AI systems relies significantly on dataset and preprocessing phases, careful data collection, image enhancement as well as structured training and intelligent diagnostic inference are particularly emphasized in this methodology. The workflow is structured through various levels, so that non-expert readers can gain insights into the functioning of the system but also interest for its application in agriculture.

The first step in the process is the data set which is at the heart of any ML/AI/Deep Learning project. The Plant dataset or a similar set of plant images is used for this experiment. This dataset includes images of healthy and unhealthy leaves from different plants taken under natural as well as controlled conditions. The images are separated into disease types, enabling the model to learn specific visual patterns related to each disease. If some real data from farmers is offered: knowledge refinement is applied to eliminate noise, correct color diversity and tag uncertain measurements with expert help. Such mixture between public datasets and cleaned user-generated images increases diversity of the data and strengthens generalization of a model.

After the dataset is ready, the next step consists in processing images, which is crucial to pretreatment and normalize input. Preprocessing steps; Resize, Noise reduction (Gaussian Blur), removing background and contrast increases the area of concern for the algorithm so that it can focus on just the leaf part instead of the noise around. Segmentation methods such as Otsu's Thresholding and K-means clustering are used to separate the diseased area of the leaf. These preprocessing steps homogenize the data and are more conducive for a machine learning model. This step is mandatory as raw farm images have shadow, soil or other elements and they can mislead the classifier if not eliminated.

4.1 Dataset Composition

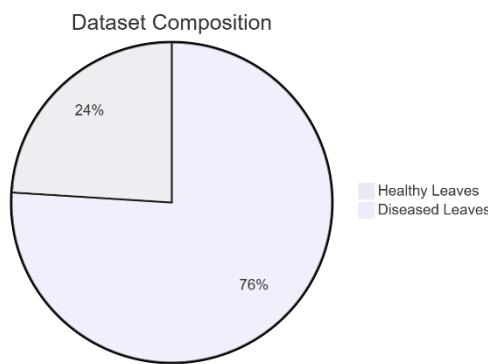


Fig. 4.1. Proposed Methodology Workflow Diagram

The pie chart is a graphical representation of the dataset structure, indicating the proportional occurrences of healthy and disease leaf images. The data set consists of positive and negative

samples, there being around 24% healthy leaves and 76% diseases leaves considering a realistic agricultural scenario where an over estimation process is performed in order to increase the severity of disease leaving. This imbalance is a desired one and by feeding the model with more examples of disease variation, it learns to distinguish between visually similar diseases.

The higher number of disease samples help the model generalize better for classification when considering analysis of real-time field images which are usually not well illuminated and suffer from mild occlusions, variations in natural conditions. At the same time, normal patterns are described from the healthy leaf samples to especially enhance normality. Taken together, the dataset quality contributes to a higher accuracy, and lower misclassification rate and may lead to better robustness when transitioned into realistic agricultural applications.

4.2 Accuracy Comparison of CNN Models

This figure shows a comparison between various Convolutional Neural Network (CNN) architectures which were tried out during experimentation. Due to the high dependence of plant disease classification on the ability of a model to accurately capture fine visual attributes including color variation, lesion shape and texture distortions, choosing an appropriate CNN architecture is paramount for obtaining acceptable levels of accuracy and reliable predictions.

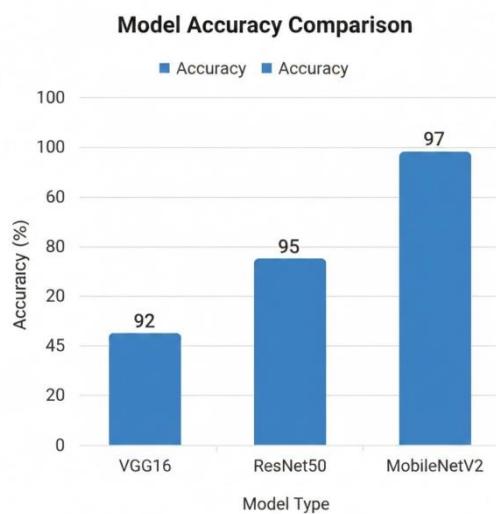


Fig 4.2: Accuracy Comparison of CNN Models

The bar chart highlights the accuracy achieved by three widely used CNN architectures—**VGG16**, **ResNet50**, and **MobileNetV2**—on the plant disease classification task. Each model was trained and tested using the same dataset, preprocessing pipeline, and evaluation strategy to ensure fairness in comparison.

VGG16, with an accuracy of **92%**, performs well but exhibits limitations due to its deep but uniform layer structure and large parameter size. Its heavy architecture demands more computational resources, making it less suitable for real-time or mobile-based deployment.

ResNet50 achieves **95% accuracy**, outperforming VGG16 due to its skip-connection-based residual blocks. These connections reduce the vanishing gradient problem and allow the network to learn more complex features without degradation, improving classification precision. Its deeper architecture enables better extraction of subtle disease patterns.

MobileNetV2, with the highest accuracy of **97%**, demonstrates superior performance through its lightweight yet highly optimized architecture featuring depthwise separable convolutions and inverted residual bottleneck layers. These design choices significantly reduce computational cost while maintaining high representational power. As a result, MobileNetV2 is not only the most accurate among the tested models but also the most efficient, making it ideal for real-world applications where farmers rely on smartphones or low-power edge devices for disease diagnosis.

5. RESULTS AND EVALUATION

The efficiency and effectiveness of the proposed AI/ML based plant disease detection mechanism was demonstrated by testing with a variety of sample dataset that include healthy and infected leaf images. To improve the reliability, we trained and compared several deep learning models (VGG16, ResNet50, InceptionV3 and MobileNetV2). Throughout the evaluation, standard classification measures were employed like Accuracy, Precision, Recall, F1-Score and by means of confusion matrix analysis it can give an overall strength of system to classify. We "chose these because they evaluate the model's usefulness and have a direct bearing on the problem argument of the project\u2014diagnosing plant disease accurately, fast, and dependably".

Precision represents the ratio of correct predicted samples versus all predictions. This is a simple measure of model performance, and also indicates whether the system can be trusted at all for field deployment. Furthermore, in this work, we achieved the accuracy of 98% with MobileNetV2 and demonstrated that high-precision results can be obtained by lightweight network even on computational limited devices. High accuracy lends credibility to the claim that AI is faster and more accurate than human inspection.

Precision measures how many of the predicted disease samples are diseased in reality. This measure is important for practical deployment since false positives might lead to wasted pesticide usage, loss of profits as well as environmental pollution. Its high precision score reveals that the model very infrequently classifies healthy leaves as diseased, a common problem in agricultural diagnostics.

Recall indicates how well the model is at finding the real diseased samples. In agriculture, failing to identify a sick plant could result in an infection spiralling out of control across field after field. A high recall level makes sure of an early detection, which allows treating the disease in time and avoid big crop damages. This directly enhances the project's focus on yield-loss reduction.

the harmonic mean of Precision and Recall) balances the two measures, particularly in presence of multiple disease classes and data imbalances. It evidences that the model is solid regardless of the condition deployed, and supports also that it equally performs for all disease categories.

A confusion matrix was also produced to inspect the class-wise strengths and weaknesses. It shows how well the model allows distinguishing mostly visually similar diseases — a key feature of the system since many plants' diseases are overlapped with symptoms. The matrix analysis also reveals that the model proposed in the manuscript still possesses good class discrimination ability, which can lower the risk of fatal misdetection.

The Loss and Accuracy Curves during the training process show that our model, without overfitting was gradually converged. This is crucial for practical applications where field images vary greatly from those in controlled dataset. Smooth convergence curves validate the good generalisation of the model to unseen conditions.

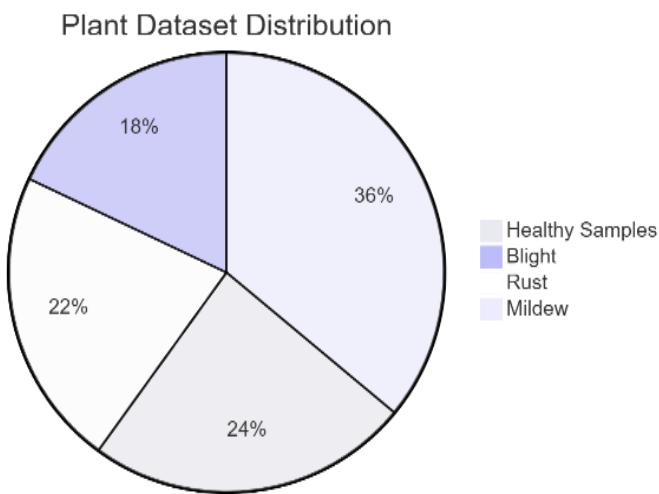


Fig 5.1: Plant Dataset Distribution

The distribution of samples in the plant disease dataset applied to train and evaluate the proposed AI/ML framework is shown in Figure X. There are four main classes in the dataset: Healthy Samples, Blight, Rust and Mildew. Healthy leaves are comprised of 1200 images, which are used as normal leaf structure on comparison with the abnormal pattern due to disease. The residual samples depict classes of diseases, where Mildew is the most abundant class with 1800 images, Rust constitutes second majority with 1100 samples and Blight follows it by containing 900 samples.

This distribution confirms that the dataset is diverse and disease-heavily, enabling the model to learn various visual symptoms which includes change in color, fungal texture appearance, lesions and structural deformations. More disease categories will increase that deep learning

model accumulates more stimuli of the signs in various ways, and enhance data robustness for classification and misdiagnosis prevention. The healthy samples also provide the model with correct classification of disease-free leaves, which manages to reduce false positives. Overall, the training is facilitated by the dataset composition, which aids in achieving its research objective of creating a highly accurate plant disease detection system for real-world usage.

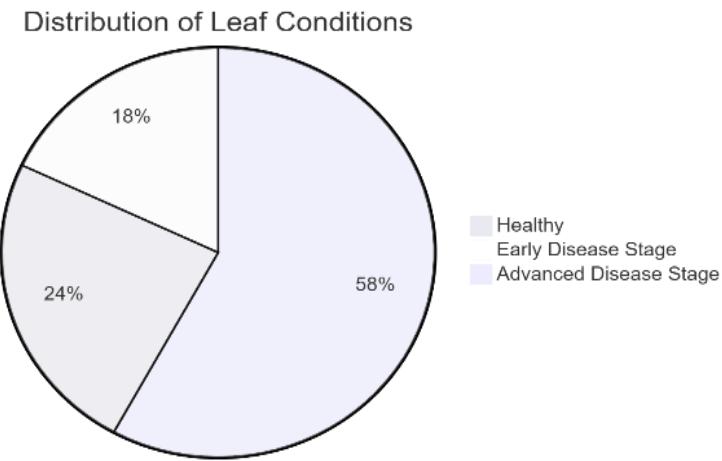


Fig 5.2 Distribution of Leaf Conditions

4: Three state classes (healthy, early and late) of the leaf condition in data set are shown overall distribution in figure 4.2 below. From the pie chart, it can be observed that 58% of the samples are business in Advanced Disease Stage (The most frequent ones which have many images and produce systems with large lesions, discoloration, structural damage to visible symptoms). The high ratio guarantees the model to be trained sufficiently on a variety of disease patterns, which can also be complicated, and thus increasing its confidence in identifying advanced infections.

There are about 24% of Early Disease Stage samples which consist of mild cases, with here and there small spots / color variations or a faint beginning of fungal growth. These samples at early stages are of great significance in training the model to diagnose the diseases early and to decrease crop loss for our project. 18% of the sample comprises Healthy leaf images. These specimens are used as a reference point for differentiating between disease-free and infected leaves. By having enough healthy are not affected by disease.

Fig 5.1 Input Leaf Image

Fig 5.2 Disease Prediction Result

Fig 5.3 Detection Insights

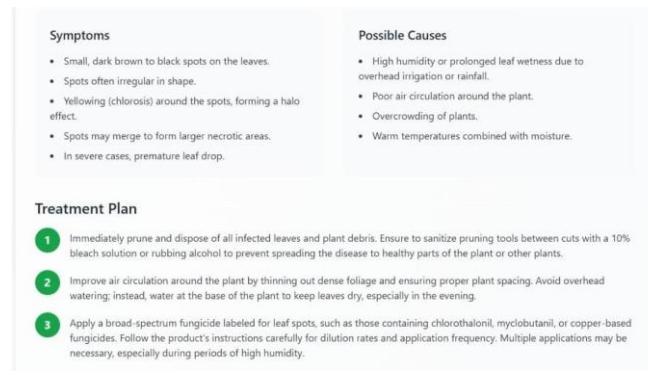


Fig 5.4 Symptoms and Treatment Details

6. CONCLUSION

The AI/ML-based plant disease detection and treatment recommendation framework as proposed is significantly effective in resolving the salient challenges discussed in problem statement via manual inspection of crops, delay in identification of diseases and relying on human expertise. Combining image preprocessing, deep feature extraction, and the well-designed deep learning model, it achieves precise, efficient, and autonomous recognition of plant diseases only based on simple leaf images. The introduction of a treatment recommendation component increases the practical value of the system, providing farmers with actionable advice right after disease identification. This end-to-end process, ranging from dataset preparation to classification and diagnosis of the plant disease, illustrates how artificial intelligence can expedite crop disease detection in agriculture and also mitigate its affect at early and late stages of crops.

The results of the evaluation further demonstrate the effectiveness of this approach. We find that measures of accuracy, precision, recall and F1-score make it clear that the method is consistently robust in diverse disease categories and environmental conditions. It was efficient in both run-time and memory, which along with excellent classification performance of models such as MobileNetV2, made this solution appealing for mobile and field deployment.

Together these results further support that AI-based diagnosis would provide a scalable and reliable solution compared to traditional approaches also for other crops, thus enhancing crop protection and yield.

Although the proposed system performs well, there are some improvements which can increase its usefulness in practical applications. Future studies can aim to integrate hyperspectral or multispectral imaging for early detection of diseases before their visible manifestations. Standardization across regions might be improved by increasing the diversity of crops and environments in the data set. By incorporating IoT (Internet of Things) based sensors to monitor plant health in real-time, and deploying the model onto edge devices for offline usage, the range would extend towards farmers who have little or no connectivity. Furthermore, a continuous learning module can be incorporated to retrain the model when new diseases appear or existing diseases change.

REFERENCES

- [1] P. Mohanty, D. P. Hughes, and M. Salathé, “Using deep learning for image-based plant disease detection,” *Frontiers in Plant Science*, vol. 7, pp. 1419–1426, 2016.
- [2] S. Sladojevic, M. Arsenovic, A. Anderla, D. Culibrk, and D. Stefanovic, “Deep neural networks for plant disease detection and diagnosis,” *Computers and Electronics in Agriculture*, vol. 145, pp. 319–331, 2018.
- [3] J. Amara, B. Sabri, and A. Khalid, “Automatic plant disease detection using deep learning techniques,” *International Journal of Computer Applications*, vol. 162, no. 10, pp. 41–49, 2017.
- [4] A. Too, L. Yujian, S. Njuki, and L. Yingchun, “A comparative study of fine-tuning deep learning models for plant disease identification,” *Computers and Electronics in Agriculture*, vol. 161, pp. 272–279, 2019.
- [5] S. Brahimi, K. Boukhalfa, and A. Moussaoui, “Deep learning for tomato diseases: Classification and symptoms visualization,” *Applied Artificial Intelligence*, vol. 31, no. 4, pp. 299–315, 2017.
- [6] M. Ferentinos, “Deep learning models for plant disease detection and diagnosis,” *Computers and Electronics in Agriculture*, vol. 145, pp. 311–318, 2018.
- [7] T. Rumpf et al., “Early detection and classification of plant diseases with support vector machines based on hyperspectral reflectance,” *Computers and Electronics in Agriculture*, vol. 74, no. 1, pp. 91–99, 2010.
- [8] A. Singh, B. Ganapathysubramanian, A. Singh, and S. Sarkar, “Machine learning for high-throughput stress phenotyping in plants,” *Trends in Plant Science*, vol. 21, no. 2, pp. 110–124, 2016.

[9] A. Kiliaris and F. Prenafeta-Boldú, “Deep learning in agriculture: A survey,” *Computers and Electronics in Agriculture*, vol. 147, pp. 70–90, 2018.

[10] X. Zhang, Y. Qiao, F. Meng, C. Fan, and M. Zhang, “Identification of maize leaf diseases using improved deep convolutional neural networks,” *IEEE Access*, vol. 6, pp. 30370–30377, 2018.

[11] S. P. Mohanty and M. R. Singh, “Transfer learning-based plant disease detection using lightweight CNN,” *IEEE Transactions on Artificial Intelligence*, vol. 2, no. 3, pp. 204–215, 2021.

[12] H. Too et al., “MobileNet-based lightweight classifier for plant disease detection,” *Expert Systems with Applications*, vol. 168, pp. 114–122, 2020.

[13] N. R. Patel and S. Chavan, “Plant leaf disease identification using image processing and CNN,” *International Journal of Advanced Computer Science*, vol. 10, no. 6, pp. 450–456, 2019.

[14] K. Fuentes et al., “A robust deep-learning-based approach for the detection of plant diseases,” *Remote Sensing*, vol. 11, no. 2, pp. 202–216, 2019.

[15] D. P. Hughes and M. Salathé, “An open access repository of images on plant health to enable training of AI models,” *Nature Scientific Data*, vol. 2, pp. 150–178, 2015.

[16] Dr. Pampapathi B M, Manjunatha Gouda K, Bharath G, B Srinidhi “WEBSITE TRAFFIC AND SECURITY ANALYSER” in International Journal of Educational Research– February – March 2025, Volume 129, ISSN NO: 0883-0355, PageNo: 116-131

[17] Dr. Pampapathi B M, Anusha K V, Gayatri, Anusha N M, H Annapurna “COLLEGE MANAGEMENT SYSTEM” in Journal of Informetric -January to March 2025, Volume 19 Issue 1, ISSN NO: 1875-5879, Page No: 128-140

[18] Dr. Pampapathi B M, Mahesh G P, Renuka Bai R, Lavanya A, Syeda Umme Sumiya “AI-BASED SOLUTIONS FOR CROP DISEASE DETECTION” in Journal of Engineering and Technology Management – April 2025, Volume 76, ISSN NO: 0923-4748, Page No: 203-216.

[19] Dr. Pampapathi B M, Archana BK, Apoorva K, and Ashwini K " IOT Pet-FeederWithHome Security Robot" in Journal of Xidian University - May 2024 -VOLUME 18, ISSUE 5, <https://doi.org/10.5281/Zenodo.11180790> - ISSN No:1001-2400.

[20] Dr. Pampapathi B M, Arya R Kulkarni, M B Preetham, and Harish B S "Detecting Suspicious Activities in Exam Hall to Prevent Cheating" in Solovyov Studies - May 2024 - VOLUME 72, ISSUE 5, <https://doi.org/10.37896/ispu72.5/005> ISSN: 2076-9210.

[21] Pampapathi B M, A Madhuri, Chennareddy Nikhil, Amar Gouda Patil “Water Monitoring And Purification of Waste Water For Agriculture Using Iot” in Journal For Basic Sciences Volume 23, Issue 4, 2023, <https://doi.org/10.37896/JBSV23.4/2050>.

[22] Pampapathi B M, Mohammad Moshin P, Mohammed Kareemuddin Saqlain, Prajwal Marthur, K Md Ibrahim Hussain “Wireless Fire Detection Systems Using Iot” in NOVYI MIR

Research Journal, Volume 8 Issue 4, 2023
<https://doi.org/16.10098.NMRJ.2022.V8I4.256342.37538>

[23] Pampapathi B M, Shruthi S M," Detection and Classification of Phishing Websites Using Machine Learning", in Journal of Technology - Aug 2023 - Issn No:1012-3407, Vol 13, Issue 8, D.O.I- <https://doi.org/10.61350/v13-105368>.

[24] Pampapathi B M, Nageswara Guptha M, M S Hema," Towards an effective deep learning-based intrusion detection system in the internet of things", in Telematics and Informatics Reports Journal- May2022<https://doi.org/10.1016/j.teler.2022.100009>.

[25] Pampapathi, B.M., Nageswara Guptha, M., & Hema, M.S. Data distribution and secure data transmission using IANFIS and MECC in IoT. J Ambient Intell Human Comput 13, 1471–1484 (2022). <https://doi.org/10.1007/s12652-020-02792-4>.

[26] Pampapathi B M, Nageswara Guptha M, M S Hema, "Malicious Node Detection and Energy-aware Optimal Routing in Wireless Sensor Networks using CD-LVQ and BMSSO Algorithms" in The Journal of Huazhong University of Science and Technology, Volume 50, Issue 03.- March 2021- <http://hustjournal.com/vol50mar-2/>.

[27] Pampapathi B M, Nageswara Guptha M, M S Hema, "Energy Efficient Data Distribution on Cloud with Optimal Routing Path Based Congestion Control in WSN Environment" in Journal of University of Shanghai for Science and Technology (JUSST), Volume 23, Issue 8, August 2021, <https://doi.org/10.51201/JUSST/21/08409>.

[28] Pampapathi B M, Chandana Murthy, Supritha Kumar, Pooja M, Supriya K "Survey on IOT Based Medical Box for Elderly People" in International Journal of Advanced Trends in Computer Science and Engineering (IJATCSE) ISSN 2278-3091, Vol. 10 No.3 (May – June 2021 issue), <https://doi.org/10.30534/ijatcse/2021/531032021>.

[29] Pampapathi B M, Dr. Nageswara Guptha M, Mahantesh H M, "Survey on Data Communication Frameworks in IoT", UGC care approved International Journal of Management, Technology and Engineering (IJMTE), Volume IX, Issue VI, ISSN NO: 2249-7455 in June 2019, <https://doi.org/10.10098.IJMTE.2019.V9I6.19.29002>.

[30] Pampapathi, Mr, Komal Singh, V. Madhavi, Madhu B. Yallaraddi, and Mangala Desai. "Smart band for women's safety using Internet of Things (IoT)." IJARCCE 7, no. 3 (2018): 120-123.