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Abstract

In this article, we consider the case of a birth-death process (B.D.P.)
with an infinite number of states and constant birth and death rates (in-
dependent of the number of states).

We have determined the deterministic solution (the distribution of
the B.D.P.) of the Kolmogorov differential equations for the birth-death
process, a solution that depends only on the birth (lambda) and death
(mu) rates, and this is a first for scientific research.

Keywords: Birth and Death Process, Matrix, Vandermonde matrix,
Diagonalisation, Exponentiel of Matrix, Kolmogorov differential equa-
tions.

1 Introduction:

Mathematically, birth and death processes are often modeled using systems of
differential equations, called direct Kolmogorov equations. These equations de-
scribe the evolution of the probability distribution of the number of individuals
in the system over time. However, these equations can be notoriously difficult
to solve analytically or even impossible, especially for complex systems with
non-constant birth and death rates.

As a result, researchers often resort to approximation methods or numerical
simulations to study birth-death processes (see [4] and [5]). These methods can
provide valuable insights into the behavior of these systems, but they also have
limitations. Therefore, there is a constant search for new methods to resolve
theses équations.

The use of spectral methods to study birth and death processes was pioneered
by S. Karlin and J. McGregor (see [11], [10] and [9]). They defined a sequence
of polynomials Qn (x) such that Q, (x) =1 and xQ = AQ.

This article focuses on general birth and death processes with an infinite
number of states:
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Postulates. fhe system changes only through transitions from states to their
nearest neighbors (from En to Ensy or En— if n = 1, but from E, to E,
only). If at epoch t the system is in state En, the probability that betmeen ¢ and
t + h the transition E, — En., occurs equals Znh + o (h), and the probability of
En _En—, (if n 13 equals u,h + o (h). fhe probabilitynthat during (¢, t + h)
more than one change occurs is o (h). ([7] page 454).

This paper builds upon our previous work [1], [2], [3] which laid the founda-
tions for this approach. However, the current study extends and refines these
methods, making significant new contributions, especially by applying our for-
mula that gives the nth power of any 2x2 matrix.

Let (Xt)¢»7z+ be the discret and homogeneous "Birth and Death" stochas-
tique process such 6 (i,j) € IN

> ZAt+o(AD);ifj=i+1
. ¥ UAt+o(ADifj=i—1
Py(AD =P Xewse=i/Xe=i)= 40O
1) >
o(At);if [j—i| =2

, 1
P, (t) - 4 1
] P, () ) _ 0.
with Pi(t) =P (Xt =1),P()= - . -, P0O)= - -
@Pn(t) = @ : »

and= P (Xe=1) =1

=1

Zj is the birth rate and y; is the death rate.

Proposition 1 Get (Xe)sr+- be the discret and homogeneous “Birth and Death”
stochastique process mith conditions (1), so P (t) = (Py (), P> (1), ...)t = (Pi @),
is solution of the foloming linear differential equations systeme.

< Pi(t) = — (Zi + 1) P1 (8) + p=Po (2)
Pj(t) = Zj—Pj— () — Zi+ 1y Pj(t)+ ., Pja (t) 6 = 2

and
P (t)=AP (b
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called the backmard equation, mith

7 _(Z1+/11) Mo 0
Z

0 Zh— —(Zn+ Up) HMpyy O

>
Proof. P (Xtiat =j) = jorn P Xtzat =j/Xe =) P (Xt =1)

P (Xtiat=j)) = PXtsat=j/Xe=j— 1P Xe=j—1)+
+P (Xtiat=j/Xe=j+1)P (Xe=j+ 1)+
+PZ(Xt+At =j/Xt=J)P (Xt =j) +
+ P (Xetiat=j/Xe=10) P (Xt =1)

i2IN
il=j

= Zj AP (Xe=j — 1)+ u; AtP (Xe =j + 1) +
+ 1— Zj+u; At P(Xt=j)+o(Al)
==

Pj(t+ At)—P;j (t) = Zj—Pj— (t) + ;1 Pisa (t) — Zj+ 15 Pj(t) At+o(Al)

==
Pit+A)—Pi() _,, » O)+pu P ()— Z +u P (t)+ o (At)
At J—17 J—1 J+1 Jj+1 J J J At
==
Pj (t) = Zj—Pj— (t) — Zj + 1j Pj () + tj 1 Pia () 6j =2
(When At ., 0)
n

let S be an eigenvalue of the matrix A and x = (xh) oy« and an associated
right eigenvector, so Ax = fx

— (Zl + ,u1) X1+ X = Bxl

A4 = pPxn 2<k
Zh—Xp—1 — (Zn + ,uh)xh + Upi1Xh+1

3
UpiiXhin — (Zn + up + B)xn + Zh—xn— =0, 6l<k

with xo =0 or Z, =0.
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1.1 The case of constant birth and death rates: Ak = A and
Mg = M

The associated right eigenvectors (Ax = Bx, x = (xh),,znx) Will therefore verify
the following system

(Eh) : UXh+1 — (Z+ u + ﬁ) Xh + th—1 = O, 61 < k

with x, =0 and x, € IK.

If u £ 0, (En) is a second-order linear recurrence sequence with constant
coefficients.

(Eh) &= Xh+1 = A:%é Xh — A/]Ch—l, 6l<k

Applying the results of the last subsection concerning second-order linear

recurrence sequences with constant coefficients with a = 2+£+£ and b = —Au
we will have
>1 h n—i—h > p n—h
Xn = un = (3¢ — axo) 1 o + Xo 12 ==>6nx=1
h=0 h=0
n—1i
Xp =X, by ns—1—h
h=0

such ; and . aresolutionsof u2— (Z+u+p) +Z=0(and x, =0).

Let A= (Z+u+p)2—4Zu q
1st case: If (Z+u+P)2=4Zu,so ,= ,= Aty = A andbn=>1
2 H

ast case: If (Z+u+pB)2#4Zu,so ¥ s,andbnz=1

n___ n
Xn = 1 2 x;
1 2
such , = GsEBrds o jpang , = @HB=A2 v (K = IR or
s).
- n
—2 cIR
1~ 2
. A > A -
since, 1:(_+u_+£)¢ € s\IR == 2=(_+u_+2%);A =3 (as (ZwpP) €
IR3)
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2 The left eigenvectors:

Remark 2 In the same may and method that me used to determine the right
eigenvectors (Ax = x) (xn)ps, = Q (B), me could do it to find the left eigen—
vectors yA = By.

Let now U (X) = (Yn)}», = W1, Yo, ...) such UA = XU and X =3
T —(Zitu)y+Zy- = Py
g MY — (Zo + Uy) Yo + Zoys = Py-

YA = By <= .
> UpYh— — (Zh + Up) Yn + Zoyner = Pyn

with yo=0,Zn=Z and up, = u
The associated left eigenvectors (yA = By, y = (Yn)poyx) Will therefore
verify the following system

pyh— — (Z+u+P)yn+Zyna =0
(En) : uyh— — (Z+u+pPyn+Zyn, =0, 6l<k
= ZYhi1 = —uyh— + (Z+u+P)yn, 6l<k

with yo =0 and y, € IK.

- Z+u+p u
(Eh) <= Yh+1 = 7 Yhn —th—1, 61 <k

Remark 3 It is the same system of equations as in the case of right—hand eigen—
vectors by permuting lambda ”Z” mith mu "u”.

Y/
Theorem 4 1st case: If (Z+u+p)2 =4Zu,so = , =Ashb = =
and 6n > 1
n— n—1
y:n Z_+L+Q lyznn_lyz ng 2y
n 27 1 1 1 7 1
2stcase: If (Z+u+pP)2£4Zu,s0 £ ,andbn=1
1[7_ 2n
Yn= U
1 2

N =

such , = UssBieaz o ppr = QuBI=02 - 1 (1K = IR or s) and
A=Z+u+p)2—4zu.
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3 The probability law (distribution) of birth and

death processes:
Let, X =3, U = U (X) = (yn)ps, and
fFEH=UX)P@®)
So, P'(t) =AP (t) == UP' () = UAP (t) =
UP' (t)= XUP (t)

= 656D 6fx U(X)P B =UX)AP () =XU (X) P (t) = XfF (X, 1)
B/ 0t Xf (X, 1)
= 6t ’
f(XJO) :yl EIK

since P (0) = (1,0, ...)¢

So,
=
fFX)=yX=UX)P ()= yn (X) Pn (1)
h=1
3.1 1st case: If O\f U+ B)? = 4A\u
So, 1= o =Mk = Hrand p=—(Z+u) 2 Zu=p, or f_
Y -
with B, = —(Z+u)+3 Zwand p_ = — (Z+u) —2 Zu are the two

possible eigenvalue of A. . Ve

< A have 1 eigenvalue f = — (Z+pu) +2 Zp

So we have 3 possibilities ~ or A have 1 eigenvalue f = —(Z+u) —2 Zu
> or A have 2 eigenvalues 5, and f_

and6n=>1
Z+u+ ﬁ n— n_1
Yo = 1n A y1=n'Tly, = n'Lé Y1

Xt 2

== f (X, )=ye =UX)P({)= L (X) P (D)
2 ha B =
== F(X, )= k. yPrn()= k5 = yPa(d)
== =1 h=1
eXl' = +°°k u L? P (t)
VA h
h=1
Xt B o A+u+X n—i

FXt=ye =UXP@B= y@XPr()= " P (£)
== h=1 h=1

Xtz ZHuEX P

h=1 27

Page No: 6



Journal of Cyber Security(2096-1146) || Volume 7 Issue 12 2025 || www.journalcybersecurity.com

From another point of view, let
Z+u+X
- =z
2Z

== <
X=2Zz—(Z+p)
| -+
T 2 k()
z h=1
==
z +oo
e[QAX_(A+IJ)]tdx = ZhPh (t)
o s h=1
== e—A+t’ Z g2Atxy e = T+ Zzhp (1)
o h=1 h
==
e—(A+u)t =
g % _ =" Z'Ph(p)
h=1
e—Gwdt DI h
= e2htz 1 = Z'P. (D
2t s h=zl h
—(A+ co k b
== e5% tz h3 4Pz = ThRzhpr (D)
as ez)\tz =ty 12)\Fz)’< — -;—':0(2)/\7[!'% h
== o7t h—1
P (5= FE— iy, o1
h k! =

32 2dcase: If (A+ u+B)?2 £ 4\l

So ¥ sandbn=1 n o n
Yn= —L—2 Y1
1 2

such , = AHeleaz o = AB=A2 o g (1K = IR or s) and

A=(Z+p+p)—Aazu. >, . S .
== fX 0=y eXt=UX)P ()= Y, x) P )= % y P, (1)

=1 1— 2

Xt = = 4

Pn (t)
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_ 1)\+g+g)+Azl _ A+u+X)—A->2
1 21 s> 2 2A ==
Z2+u 2 +
X=_1 —(Z+m=_2  —(Z+p
1 2
== -
Xt —(A+t Ay —(A+pt
e =e e 1 =e g( 1)
with
)\2+ut
g()= e
>

her M= B Pr(t)= & — Xt=e Mg (1) —g( 2)]

The function g (x) = xe Nt presents a major difficulty: an essential sin-
gularity at x = 0 due to the term et (if u F0and t=0).

Consequently, it does not admit a power series (Taylor series) around x = 0.
However, it does admit a Laurent series around x = 0.

3.2.1 Laurent series of g (x) around x =0:

We will use the Laurent series expansion of the function h (x) = e T t and
multiply it by x. Recall the Laurent series of h (x).
4§ o0

h(x)= < cnx" with

N=—-c
= n+h h
o= t2)  .(tw)
H=
h=max(o,—n) (1 + k)L.Kk!
g(x)=xh(x)=x cnx = cpx = Ch_ X" = snx”
N=—=oo N=—= N=—=oo N=—=

_ _ P (EAY 1. (-
Sn=Cn— = “(nvh—DLhT

h=max(0,1—n)
This Laurent series is the expansion we are looking for around the singularity
x=0. It is valid for all x £ 0. So,

g(.) = = Sn U = = Snn+80+28n
1 1 1
n=—-o N=—-o n=1
= =
= S—n " +So+ sn "
1 1
n=1 n=1
the seem thing
= =
g( 2= s—n ;"+So+ sn 7
n=1 n=1
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;and . are solutionsof u2— (Z+u+p) +Z=0==>u, =2

==
. _ u
o= 2 and
4 o u
- -1
2 Z
2 n 2
=og( )= D5 b tsot s s, ]
k4 n=1 n=1
< _T pon bl
- g( 1)—nls—n A ?+So+ Sn';
= n=1
;g( 2) = S—n x 5 tSo+ sn
n=1 n=1
> h h A+
_ = o—(A+t
= = = D P@=e M () —g( )]
—_ e—(A+/J)t S. n + s, + ':°° n ':°° S. g0 n _:oo S, n
n=1>—"1 , 1 0T 1SN 5 T h=15—N , 280" p=1°" 1
—A+t = U n n 3 un n
=e - S—n A, —Sn 4 . S—n A, —Sn
== = -
= :
h h >N n
= o—A+mt Son H =S ("— 7"
. = Pa(d=e p (=32
h=1 n=1
== h u n i
Po(t)= s, —sn e~ At L gn > 1
withsp= = oo
n= (n+h—DLAT

h=max(0,1—n)
n=1l==>0=1—n==>max(0,1—n)=0==>
0 n+h—1 h
= (2 . (tu)

ﬁ =
o (rk— 1)Lk

Conclusion 5 :

fhis article builds on our previous mork [1], mhich laid the foundations for
this approach. Homever, the current study extends and refines these methods,
making our nem innovative contribution. More precisely, me outline the method
for searching for the probability lam (distribution) of birth and death processes
in the general case.

It remains to be seen mhether me can apply the same trick as in [9] (see [6],
[9] and [12]) mith mell-chosen conditions to construct or assert the existence
of a positive regular measure , mith respect to mhich this time the functions
(instead of the polynomials) are orthogonal.
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Acknowledgement 6 “DetaiJed CaJcuJation of the Laurent Series Co-

efficient sm”:

We have here a more detailed explanation of the steps and calculations that
led to the coefficient sm of the Gaurent series for the function £ (x) = xe(Mx+ Jt
around x = 0.

Here are the calculation details, starting from the initial series expansion.

1. Decomposition of the Exponential Function

fhe function £ (x) can be remritten and decomposed into a product of tmo
sgrie;, using the property e?+? = e?e? and the faylor series expansion of e =

m :
h=o

F () = xePM )t = x eAxtelit
We expand the tmo exponential terms separately:

1— faylor Series for e**t (Positive Pomers x):
Setting z Ztx:

et _h>o Mﬁ@ (At%xh

— Gaurent Series for ext (Negative Pomers of x):
i = ut-
Settngzi HX. .
ecgt: (xtj = < ' x—h
h=o0 h=o0 u
2— Galculation of the g (x) = e+t Development

fhe intermediate function g (x) = e*te"& is the product of the tmo series
oo
above. fhe general term cnx” inthe Gaurentseriessg (x)= < cax” is ob—
N=—=o0

tained by multiplying a term from the first series (index j) by a term from the
second series (index k) such that the sum of the pomers of x equals n:

fotal Pomer: j+(k)=ne= j=n+k

For a given n (mhich can be positive or negative), me sum over all possible
indices k > 0. Since j must also be non—negative j > 0, the condition j = n + k

requiresthatn+k > 0, or k > —
fhe Tomer bound for k is therefore max (0, —n).
> . i
cnxn — (A'ty x] %gh)!h h
h=max(0,—n)
Substituting j = n + k and grouping the pomers of x:
o= = Aok o !
n= (n+M'- A

h=max(0,—n)
3— Galculation of the £ (x) Development
fhe final function is £ (x) = xg (x).
0 b
FO)=x < cx" = < cpx™t
NnN=—o N=—a=o0

Application of Index Shift
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We mant to express f (x) in the standard Gaurent series form: f (x) =
4§ 0
“ snx.
N=—-=o0
fo relate the tmo sums, me apply the index shift:
m=n+1
Which implies:
n=m-—1
By substituting the index n mith m — 1 in the sum for £ (x):
B 4 o°
< cpxt = < Cn—1xn
A=—e . == . .
By identification, the nem coefficient sm equals the old coefficient cn mhen
n=m-—1:
Sm=Cm—1
Final Formula for Goefficient sm
We substitute n = m — 1 into the formula for cn:
':°° (At)(nl—1)+k MLh

Sm=Cm—1 = (m—D+mt "~ A

h=max(0,—(m—i))
Simplifying the lomer bound max (0,— (im — 1)) to max (0, 1_m) and sim—
plifying the exponent/denominator:

_ Koo (AHm+k—1 (ubh
Sm = (m+h—1)! *~ M

h=max(o0,1—m) ’
fhis formula provides the coefficient of x™ in the Gaurent series expansion

of £ (x).
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