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Abstract 

In this article, we consider the case of a birth-death process (B.D.P.) 

with an infinite number of states and constant birth and death rates (in- 

dependent of the number of states). 

We have determined the deterministic solution (the distribution of 
the B.D.P.) of the Kolmogorov differential equations for the birth-death 

process, a solution that depends only on the birth (lambda) and death 

(mu) rates, and this is a first for scientific research. 

Keywords: Birth and Death Process, Matrix, Vandermonde matrix, 
Diagonalisation, Exponentiel of Matrix, Kolmogorov differential equa- 

tions. 

 

1 Introduction: 

 
Mathematically, birth and death processes are often modeled using systems of 
differential equations, called direct Kolmogorov equations. These equations de- 
scribe the evolution of the probability distribution of the number of individuals 

in the system over time. However, these equations can be notoriously difficult 
to solve analytically or even impossible, especially for complex systems with 

non-constant birth and death rates. 
As a result, researchers often resort to approximation methods or numerical 

simulations to study birth-death processes (see [4] and [5]). These methods can 

provide valuable insights into the behavior of these systems, but they also have 

limitations. Therefore, there is a constant search for new methods to resolve 

theses équations. 
The use of spectral methods to study birth and death processes was pioneered 

by S. Karlin and J. McGregor (see [11], [10] and [9]). They defined a sequence 

of polynomials Qh (x) such that Q0 (x) = 1 and xQ = AQ. 

This article focuses on general birth and death processes with an infinite 

number of states: 

Journal of Cyber Security(2096-1146) || Volume 7 Issue 12 2025 || www.journalcybersecurity.com

Page No: 1



 

→ ≥ 

,
,<
, i 

,,
, 

P2 (t) 

. . 

Σ 

@ 

. 

, 

, 

, 
j 

. . . 
. 

< P ' (t) = — (Z1 + µ1) P1 (t) + µ2P2 (t) 

2 

 
 

 
Postulates. fhe system changes only through transitions from states to their 

nearest neighbors (from En to En+1 or En—1 if n ≥ 1, but from E0 to E1 
only). If at epoch t the system is in state En, the probability that betmeen t and 

t + h the transition En → En+1 occurs equals Znh + o (h), and the probability of 
En  En—1 (if n 1) equals µnh + o (h). fhe probabilitynthat during (t, t + h) 
more than one change occurs is o (h). ( [7] page 454). 

This paper builds upon our previous work [1], [2], [3] which laid the founda- 

tions for this approach. However, the current study extends and refines these 

methods, making significant new contributions, especially by applying our for- 

mula that gives the nth power of any 2x2 matrix. 

 
Let (Xt)t2IR+ be the discret and homogeneous "Birth and Death" stochas- 

tique process such 6 (i, j) ∈ IN 

 

 

Pij (At) = P (Xt+Δt = j/Xt = i) = 

Z At + o (At) ; if j = i + 1 

µiAt + o (At) ; if j = i — 1 

1 — (Zi + µi) At + o (At) ; if j = i 

o (At) ; if |j — i| ≥ 2 

, 
P1 (t) 

1 

. . 

, 
1 

1 

. 0 . 

 

 
and P (Xt = i) = 1 

i≥1 

.  Pn (t)  . 
.
@ 

. 

.
, 

Zi is the birth rate and µi is the death rate. 

Proposition 1 Get (Xt)t2IR+ be the discret and homogeneous ”Birth and Death” 

stochastique process mith conditions (1) , so P (t) = (P1 (t) , P2 (t) , ...)t = (Pi (t)) 
is solution of the foloming linear differential equations systeme. 

1 

P ' (t) = Zj—1Pj—1 (t) — 
... 

and 

Zj + µj Pj (t) + µj+1Pj+1 (t) 6j ≥ 2 

P ' (t) = AP (t) 

i≥1 

with Pi (t) = P (Xt = i), P (t) = . , P (0) = 
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called the backmard equation, mith 

, 
— (Z1 + µ1)  µ2 0 · · · 

1 

Z 
... 

. 
... 

... . 
. . . 

. 0 . . . . 

A = . 
. 

... 
... 

... . 
. 

. 0 Zh—1 
. . 
. . . 

 
. .

, 

Proof. P (Xt+Δt = j) = 
Σ

i2IN P (Xt+Δt = j/Xt = i) P (Xt = i) 

 

P (Xt+Δt = j)  =  P (Xt+Δt = j/Xt = j — 1) P (Xt = j — 1) + 

+P (Xt+Δt = j/Xt = j + 1) P (Xt = j + 1) + 

+P (Xt+Δt = j/Xt = j) P (Xt = j) + 

+ P (Xt+Δt = j/Xt = i) P (Xt = i) 
i2IN 
i/=j 

= Zj—1AtP (Xt = j 1) + µj+1AtP (Xt = j + 1) + 

+
 

1 —
 

Zj + µj

 
At

 
P (Xt = j) + o (At) 

=⇒ 

Pj (t + At)—Pj (t) =
 

Zj—1Pj—1 (t) + µj+1Pj+1 (t) —
 

Zj + µj

 
Pj (t)

 
At+o (At) 

=⇒ 

Pj (t + At) — Pj (t) 
= Z P (t) + µ P (t) —

 
Z + µ

  
P o (At) (t) + 

At 
j—1 

=⇒ 

j—1 j+1 j+1 j j j 
At 

P ' (t) = Zj—1Pj—1 (t) —
 
Zj + µj

 
Pj (t) + µj+1Pj+1 (t) 6j ≥ 2 

(When At 0) 

...  

let β be an eigenvalue of the matrix A and x = (xh)h2IN x and an associated 

right eigenvector, so Ax = βx 
,

, 
— (Z1 + µ1) x1 + µ2x2 = βx1 

,< 
Zh—1xh—1 — (Zh + µh ) xh + µh+1xh+1 

,, 

· · · 
 

· · · 

βxh 2 ≤ k 

µh+1xh+1 — (Zh + µh + β) xh + Zh—1xh—1 = 0, 61 ≤ k 

with x0 = 0 or Z0 = 0. 

= 

1 

... 
... 

... 
... 

· · · · · · · · · · · · 

... 
  

... 
... 

 

— (Zh + 

. 

µh )  µh+1 

.. 

0 

... 
... 
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1.1 The case of constant birth and death rates: λk = λ and 

µk = µ: 

The associated right eigenvectors (Ax = βx, x = (xh)h2IN x ) will therefore verify 

the following system 

(Eh) : µxh+1 — (Z + µ + β) xh + Zxh—1 = 0, 61 ≤ k 

with x0 = 0 and x1 ∈ IK. 

If µ /= 0, (Eh) is a second-order linear recurrence sequence with constant 

(Eh) ⇐⇒ xh+1 =
  
λ+µ+β

  
xh — λ xh—1, 61 ≤ k 

Applying the results of the last subsection concerning second-order linear 

recurrence sequences with constant coefficients with a = λ+µ+β and b = — λ , 
we will have 

nΣ—1  h n—1—h Σn 
h 

 
n—h 

xn = un = (x1 — ax0)  

h=0 
 1 2 + x0 

n—1 

 

h=0 
 1  2 =⇒ 6n ≥ 1 

xn = x1 

Σ
 h n—1—h 

 

such 1 and 2 are solutions of µ 2 — (Z + µ + β) + Z = 0 (and x0 = 0). 

Let A = (Z + µ + β)2 — 4Zµ 
 

1st case: If (Z + µ + β) = 4Zµ, so  1 =  2 = = , and 6n ≥ 1 

 

xn = n 

2µ µ 

Z + µ + β n—1 
x1 

2µ 

2st case: If (Z + µ + β)2 /= 4Zµ, so  1 /=  2, and 6n ≥ 1 

  n —  n
  

 

 1 —  2 
1 1 

  

 
s). 

such 1 
(λ+µ+β)+Δ 2 

2µ ∈ IK and  2 
(λ+µ+β)—Δ 2 

2µ ∈ IK  (IK = IR or 

  n —  n 

1 — 2 
1 

 

∈ IR 

1 
 

since, 1 

IR3) 

(λ+µ+β)+Δ 2 

2µ ∈ s\IR =⇒  2 
(λ+µ+β)—Δ 2 

2µ =  1 (as (Z, µ, β) ∈ 

h=0 

coefficients. 

= = 

1 2 

= = 

xn = x1 
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h≥1 , 
— 1 

, 

2λ λ 

,<
, µ2y1 — (Z2 + µ2) y2 + Z2y3 = βy2 

, 

2Z 1 

1 2 

µhyh—1 — (Zh + µh ) yh + Zhyh+1 = βyh 

    

Z 

 

2 The left eigenvectors: 

 
Remark 2 In the same may and method that me used to determine the right 

eigenvectors (Ax = βx) (xh)h≥1 = Q (β), me could do it to find the left eigen− 

vectors yA = βy. 

Let now U (X) = (yh)t = (y1, y2, ...) such UA = XU and X = β 

(Z1 + µ ) y1 + Z1y2 = βy1 

 

yA = βy ⇐⇒ . . 

, 
. . 
. . 

with y0 = 0, Zh = Z and µh = µ 
The associated left eigenvectors (yA = βy, y = (yh)h2IN x ) will therefore 

verify the following system 

µyh—1 — (Z + µ + β) yh + Zyh+1 = 0 

(Eh) : µyh—1 — (Z + µ + β) yh + Zyh+1 = 0, 61 ≤ k 

⇒ Zyh+1 = —µyh—1 + (Z + µ + β) yh, 61 ≤ k 

with y0 = 0 and y1 ∈ IK. 

=⇒ 

(Eh) ⇐⇒ yh+1 = 

  
Z + µ + β

  
 

µ 
yh — 

Z
yh—1, 61 ≤ k 

Remark 3 It is the same system of equations as in the case of right−hand eigen− 

vectors by permuting lambda ”Z” mith mu ”µ”. 

Theorem 4 1st case: If (Z + µ + β)2 = 4Zµ, so  1 =  2 = λ+µ+β =  
√ 

µ 
, 

and 6n ≥ 1 

 

y 

 
Z + µ + β n—1 

= n y 

 

 

= n n—1y 

 

 
=  n 

 
 

 
n—1 

2 

y 

 

2st case: If (Z + µ + β)2 /= 4Zµ, so  1 /=  2, and 6n ≥ 1 

  n —  n
  

 

 1 —  2 

1 1 
  

such 1 
(λ+µ+β)+Δ 2 

2λ ∈ IK,  2 
(λ+µ+β)—Δ 2 

2λ ∈ IK  (IK = IR or s) and 

A = (Z + µ + β)2 — 4Zµ. 

 µ  

= = 

n 1 1 
Z 

1 

yn = y1 

Journal of Cyber Security(2096-1146) || Volume 7 Issue 12 2025 || www.journalcybersecurity.com

Page No: 5



 

6t ⇒ 

Σ 

, 

Σ  µ  

    

+ — (Z + µ) + 2 Zµ and β— 

= n = n n—1y =  n 
2 

y 

⇒ 

 

3 The probability law (distribution) of birth and 

death processes: 

Let, X = β, U = U (X) = (yh)h≥1 and 

ƒ (X, t) = U (X) P (t) 

So, P ' (t) = AP (t) =⇒ UP ' (t) = U AP (t) =⇒ 

UP ' (t) = XUP (t) 

= 6ƒ(x,t) = U (X) P ' (t) = U (X) AP (t) = XU (X) P (t) = Xƒ (X, t)   
6ƒ (x,t) 

= Xƒ (X, t) 
= 6t 

ƒ (X, 0) = y1 ∈ IK 

since P (0) = (1, 0, ...)t 
So, 

+∞ 

ƒ (X, t) = y1eXt = U (X) P (t) = yh (X) Ph (t) 

h=1 

3.1 1st case: If (λ + µ + β)2 = 4λµ 
So,  1 =  2 = λ+µ+β =  

√ 
µ , and β = — (Z + µ)  2

√
Zµ = β+ or β— 

2λ 

with β = λ
√  

= — (Z + µ) — 2
√

Zµ are the two 
possible eigenvalue of A. 

<
,  

A have 1 eigenvalue β = — (Z + µ) + 2
√

Z√µ  
 

So we have 3 possibilities or A have 1 eigenvalue β = — (Z + µ) — 2 Zµ 
or A have 2 eigenvalues β+ and β— 

and 6n ≥ 1 
 

  
Z + µ + β

 n—1 

 
 

 

 µ n—1 

n 2Z 

 
Xt 

1 1 1 
Z 

1 

+Σ∞ 

=⇒ ƒ (X, t) = y1e 

+Σ∞ 

= U (X) P (t) = 

h—1 

h=1 

+Σ∞ 

yh (X) Ph (t) 

 
µ
 k—1 

 

=⇒ ƒ (X, t) = 
=⇒ h=1 

k 1 y1Ph (t) =  k λ 
h=1 

2  y1Ph (t) 

+∞ 
eXt = k 

k—1 
2 P (t) 

Z 
h=1 

Xt +Σ∞ 

h 

 

+Σ∞ 

 

  
λ+µ+X

 n—1 

ƒ (X, t) = y1e 

=⇒ 

= U (X) P (t) =  

h=1 

yh (X) Ph (t) = n 
2λ 

h=1 

y1Ph (t) 

eXt = 

+∞ 

k 
h=1 

Z + µ + X  h—1 

2Z 
Ph (t) 

Σ 

y y 
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Σ 

∫ 

e   Σ 

6 ≥ 

Σ    

+∞ 

=⇒ , 
X = 2Zz — (Z + µ) 

— 1 = z 

2λt h=1 h 

2λt h=1 h! h=1 h 

as e2λtz = 
Σ+∞ (2λtz)k 

= 
Σ+∞ (2λt)k zh 

1 2 

1 2 

h=1 1 2 

1 2 

h=1 

 

 

 

From another point of view, let 

Z + µ + X 
= z 

2Z 
 

< 

e[2λz—(λ+µ)]t 

, 

 
+∞ 

= 
h=1 

 

 

kzh—1Ph 

 
(t) 

=⇒ 
z 

 
0 

 

 

e[2λx—(λ+µ)]tdx = 

 

+∞ 

 

h=1 

 

zhPh (t) 

=⇒ e—(λ+µ)t 
, z 

e2λtxdx = 
Σ+∞ zh P (t) 

0 h=1 h 

= 
—(λ+µ)t +∞ 

2λtz h 
 

 

=⇒ e
—(λ+μ)t 

e2λtz — 1
 

= 
Σ+∞ 

zhP (t) 

=⇒ e—(λ+μ)t Σ+∞ (2λt)k 

zh = 
Σ+∞ 

zh P 
 

  

(t) 

h=0 h! 

=⇒ 
h=0 h! 

h—1 

P (t) = 
(2Zt)  

e—(λ+µ)t,  k 1 
h k! 

3.2 2d case: If (λ + µ + β)2 /= 4λµ 

So  1 /=  2, and 6n ≥ 1  
n n

  

yn = 

 
1 

 1 —  2 y 
 1 —  2 

1 

such 1 
(λ+µ+β)+Δ 2 

2λ ∈ IK,  2 
(λ+µ+β)—Δ 2 

2λ ∈ IK  (IK = IR or s) and 
A = (Z + µ + β)2 — 4Zµ. 

=⇒ ƒ (X, t) = y eXt = U (X) P (t) = 
Σ+∞ 

y 
 
(X) P (t) = 

Σ+∞  
 k— k 

 
y P (t) 

1 

Σ+∞  

h=1  h h 

 h — h
  

 

h=1  1— 2 
1  h 

h=1  1 —  2 

 
with X = β. 

=⇒ ( 1 —  2) eXt = +∞  h —  h Ph (t) =⇒ 

Σ
  h —  h

 
Ph (t) =  1eXt —  2eXt 

2Zt 

Σ 

= = 

e 
h=1 

Ph (t) 

eXt = Ph (t) 

⇒ 

1 

=⇒ 
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  / / 

Σ 

Σ Σ Σ Σ 

Σ 

Σ 1 Σ 

Σ+∞
  h —  h

 
Ph (t) =  1eXt —  2eXt = e—(λ+µ)t [g ( 1) — g ( 2)] 

2 2 

Σ 

n=1 n=1 

 

 
1 

 

= 
(λ+µ+X)+Δ 2 

,  
1 

 

(λ+µ+X)—Δ 2 

2λ 

Z 2 + µ Z 2 + µ 
X =  1  — (Z + µ) =  2  — (Z + µ) 

 1 

=⇒ 
Xt —(λ+µ)t 

 
 

 
λ 2+μ 

1 t 

 2 
 

 
—(λ+µ)t 

 
with 

 1e = e  1e   1 = e g ( 1) 

λ 2+μ 

g ( ) =  e  

h=1 1 2 

λx2+μ t 
The function g (x) = xe  x presents a major difficulty: an essential sin- 

gularity at x = 0 due to the term e
μ  

t (if µ = 0 and t = 0). 

Consequently, it does not admit a power series (Taylor series) around x = 0. 
However, it does admit a Laurent series around x = 0. 

 

3.2.1 Laurent series of g (x) around x = 0: 

We will use the Laurent series expansion of the function h (x) = e 
multiply it by x. Recall the Laurent series of h (x). 

 
 

 

λx2+μ 
x 

 

 
, and 

h (x) = 
+∞ 

 

n=—∞ 

cnxn with 

 +∞ n+h h 

cn = 
h=ma

Σ

x(0,—n) 

(tZ) . (tµ)  

(n + k)!.k! 

 

g (x) = xh (x) = x 
+∞ 

 

n=—∞ 

cnxn = 
+∞ 

 

n=—∞ 

 

cnxn+1 
+∞ 

= 
n=—∞ 

 

cn—1x
n 

+∞ 

= 
n=—∞ 

 

snxn 

sn = cn—1 = 
+∞ 

 

h=max(0,1—n) 

(tλ)n+k—1.(tµ)k 
(n+h—1)!.h! 

This Laurent series is the expansion we are looking for around the singularity 

x = 0. It is valid for all x /= 0. So, 

 

 
g ( 1)  = 

+∞ 

sn n = 
+∞ 

sn n + s0 + sn n 

n=—∞ 
+∞ 

1 1 

n=—∞ 
+∞ 

1 

n=1 

= 
Σ 

s—n —n + s0 + 
Σ 

sn n 

 
the seem thing 

1 

n=1 

1 

n=1 

 +∞ +∞ 

g ( 2) = 
Σ 

s—n —n + s0 + 
Σ 

sn n 
 

2λ = 

t 

t 

1 2 =⇒ 

Journal of Cyber Security(2096-1146) || Volume 7 Issue 12 2025 || www.journalcybersecurity.com

Page No: 8



 

Σ 

Σ 

Σ 

Σ 

—(λ+µ)t

  
Σ 

1 
Σ 

2 

Σ 
2 

Σ 
1 

+∞ Σ h 

Σ 

Σ 

=⇒ g ( 1) = sn 2 

 1 —  2 

1 

2 

2 

1 

n 

λ 

 

 

 1 and  2 are solutions of µ 2 — (Z + µ + β)  + Z = 0 =⇒ µ 1 2 = Z 

=⇒ 
 

 

 

 

+Σ∞ 

—1 
1 

—1 
2 

 µ  n 

µ 
=  2 

Z 
µ 

=  1 
Z 

+Σ∞ 

and 
 
 

 
n 

=⇒ 

,
,< 

,, 

 
g ( 1) = 

 

g ( 2) = 

 

+∞ 

 
n=1 
+∞ 

 

n=1 

 

 

s—n 

 

s—n 

 

 µ n 
 

 µ n 
 

 
 

 

 
n + s0 

 
n + s0 

 
+∞ 

+  sn n 
n=1 
+∞ 

+  sn n 
n=1 

+Σ∞  h h  —(λ+µ)t 
 

 
+∞ 

= e 
n=1 

 

 

s—n 

 

 µ n  
 n + s0 + 

 

+∞ 

 
n=1 

 

sn n — 

 
+∞ 

 
n=1 

 

 

s—n 

 

 µ n 
 

 n — s0 — 

 
+∞ 

 
n=1 

 

sn n

  

—(λ+µ)t

 
+Σ∞  

 µ n n +Σ∞   µ n n
  

= e 

=⇒ 
n=1 

s—n  λ — sn  1 — 
n=1 

s—n  λ — sn  2 

Σ
  h —  h 

 

Ph (t) = e—(λ+µ)t 
+∞ 

s—n 
 µ n — sn

i 

( n —  n) 

h=1 

=⇒ 

1 2 
 
 
 

Pn (t) = 

 

 

h
s—n 

 
 µ n 
 

 
 

n=1 

— sn

i 

Z 1 2 

e—(λ+µ)t  , 6n ≥ 1 

with sn = 
+∞ 

h=max(0,1—n) 

(tλ)n+k—1.(tµ)k 
(n+h—1)!.h! 

n ≥ 1 =⇒ 0 ≥ 1 — n =⇒ max (0, 1 — n) = 0 =⇒ 
+∞ n+h—1 h 

s  = 
(tZ) . (tµ)  

h=0  
(n + k — 1)!.k! 

 

 

Conclusion 5 : 

fhis article builds on our previous mork [1], mhich laid the foundations for 

this approach. Homever, the current study extends and refines these methods, 

making our nem innovative contribution. More precisely, me outline the method 

for searching for the probability lam (distribution) of birth and death processes 

in the general case. 

It remains to be seen mhether me can apply the same trick as in [9] (see [6], 

[9] and [12]) mith mell−chosen conditions to construct or assert the existence 

of a positive regular measure , mith respect to mhich this time the functions 

(instead of the polynomials) are orthogonal. 

λ 

h=1 

Z 

  

  

λ λ 

n=1 

s—n λ 1 + s0 + 
n=1 

=⇒ Ph (t) = e [g ( 1) — g ( 2)] 
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x 

Σ 
 : 

x 

x 

x 

Σ ( t) Σ 

x 

x 

Σ 

— ⇐⇒ 

Σ h 
. 

i 

Σ Σ 

x x 

= j!  x . h! 
x 

h=max(0,—n) 

 

 

Acknowledgement 6 ”DetaiJed CaJcuJation of the Laurent Series Co- 

efficient sm”: 

We have here a more detailed explanation of the steps and calculations that 
μ 

led to the coefficient sm of the Gaurent series for the function ƒ (x) = xe(λx+ )t 

around x = 0. 

Here are the calculation details, starting from the initial series expansion. 

1. Decomposition of the Exponential Function 

fhe function ƒ (x) can be remritten and decomposed into a product of tmo 

series, using the property ea+b = eaeb and the faylor series expansion of ez = 
zk 

h! 
h≥0 

ƒ (x) = xe(λx+ μ )t = x.eλxte
μ 
t 

We expand the tmo exponential terms separately: 

1− faylor Series for eλxt (Positive Pomers x): 

Setting z = Ztx: 

eλxt = 
Σ (λtx)k 

= 
Σ (λt)k xh 

  

− Gaurent Series for e
μ  
t (Negative Pomers of x): 

Setting u = µt : 

e
μ  
t = 

+∞ μ k 

x 
 

h! 
h=0 

+∞ 
(µt)k 

= 
h! 

h=0 

x—h 

2− Galculation of the g (x) = e(λx+ μ )t Development 

fhe intermediate function g (x) = eλxte
μ 
t is the product of the tmo series 

above. fhe general term cnxn in the Gaurent series g (x) = 
+∞ 

 

n=—∞ 

cnxn is ob− 

tained by multiplying a term from the first series (index j) by a term from the 

second series (index k) such that the sum of the pomers of x equals n: 

fotal Pomer: j + ( k) = n    j = n + k 
For a given n (mhich can be positive or negative), me sum over all possible 

indices k ≥ 0. Since j must also be non−negative j ≥ 0, the condition j = n + k 

requires that n + k ≥ 0, or k ≥ —n. 
fhe lomer bound for k is therefore max (0, —n). 

n 
+Σ∞ h

(λt)j j (µt)h —h 
i 

 

 

Substituting j = n + k and grouping the pomers of x: 

cn = 
+∞ 

 

h=max(0,—n) 

(λt)n+k 

(n+h)! 
(µt)h 

h! 

3− Galculation of the ƒ (x) Development 

fhe final function is ƒ (x) = xg (x). 

ƒ (x) = x 
+∞ 

 

n=—∞ 

cnxn 
+∞ 

= 
n=—∞ 

cnxn+1 

Application of Index Shift 

h≥0 h≥0 
h! h! 

cnx 
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Σ 

Σ Σ 

Σ 

— — — 

Σ 

 

 

We mant to express ƒ (x) in the standard Gaurent series form: ƒ (x) = 
+∞ 

 

n=—∞ 

snxn. 

fo relate the tmo sums, me apply the index shift: 

m = n + 1 

Which implies: 

n = m — 1 

By substituting the index n mith m — 1 in the sum for ƒ (x): 
+∞ 

 

n=—∞ 

cnxn+1 
+∞ 

= 
n=—∞ 

cn—1x
n 

By identification, the nem coefficient sm equals the old coefficient cn mhen 

n = m — 1: 
sm = cm—1 

Final Formula for Goefficient sm 

We substitute n = m — 1 into the formula for cn: 

sm = cm—1 = 
+∞ 

 

h=max(0,—(m—1)) 

(λt)(m—1)+k 
 

 

((m—1)+h)! 

(µt)h 

h! 

Simplifying the lomer bound max (0, (m 1)) to max (0, 1 m) and sim− 

plifying the exponent/denominator: 

sm = 
+∞ 

 

h=max(0,1—m) 

(λt)m+k—1 
 

 

(m+h—1)! 

(µt)h 

h! 

fhis formula provides the coefficient of xm in the Gaurent series expansion 

of ƒ (x). 
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