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ON MANNHEIM CURVES IN A STRICT WALKER

3-MANIFOLD

RÉNOVAT NKUNZIMANA AND CHRISTOPHE MBABARE NGIRENTE

Abstract. In this paper we study the geometry of Mannheim curves in a strict

Walker 3-manifold and we obtain explicit parametric equations for Mannheim
curves and timelike Mannheim curves, respectively. We determine the distance

between two corresponding points of the Mannheim pair of curves and show

that distance depending of the curvature. We discuss the relationship between
the curvature and torsion of a pair of Mannheim curves in a strict Walker

Manifold. We finish by an example of Mannheim pair curves for illustrate the

result.

1. Introduction

In the study of the fundamental theory and the characterizations of space curves,
the corresponding relations between the curves are the very interesting and impor-
tant problem. The well-known Bertrand curve is characterized as a kind of such
corresponding relation between the two curves. For the Bertrand curve α, it shares
the normal lines with another curve β, called Bertrand mate or Bertrand partner
curve of α. In this paper, we are concerned with another kind of associated curves,
called Mannheim curve and Mannheim mate (partner curve) in history of differen-
tial geometry. In this work, we call them simply as Mannheim pair.
From the elementary differential geometry we know clearly about the character-
izations of Bertrand pair. But there are rather few works on Mannheim pair.
According to [6] it is just known that a space curve in R3 is a Mannheim curve
if and only if its curvature κ and torsion κ satisfy the formula κ = λ(κ2 + τ2),
where λ is a nonzero constant. In [10], B. Y. Chen characterizes the curve which
satisfies τ

κ = as + b, a 6= 0. Here, our examples will give the curve which satisfies
τ
κ = sinh(s).
In [6], the autors give the neccesary and sufficient conditions for a curve in 3 Eu-
clidean space to be a Mannheim partner of a giveen curve. They show also that the
Mannheim curve of generalized helix is a straight line. In [5], the authors proved
that the distance between corresponding points of the Mannheim partner curves in
three dimensional Heisenberg group is is constant.
Motivated by the above works, in this paper, we study the Mannheim partner
curves in three dimensional Walker manifold M3. We will give the necessary and
sufficient conditions for a curve to be a Mannheim partner curve of an other curve
in three Walker Manifold. We detrmine the Mannheim partner of the generalized
and the slant helices.
The paper is organised as follow: in section 2, we give some preliminaries tools about
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2 RÉNOVAT NKUNZIMANA AND CHRISTOPHE MBABARE NGIRENTE

Mannheim curves Walker 3-dimensional space. In section 3, we study Mannheim
curves in a strict Walker 3-manifolds and the last section talks about Mannheim
partner of helices.

2. Preliminaries

2.1. Mannheim partner curves.

Definition 2.1. [6] Let R3 be the 3-dimensional Euclidean space with the standard
inner product. If there exists a corresponding relationship between the space curves
α and β such that, at the corresponding points of the curves, the principal normal
lines of α coincides with the binormal lines of β, then α is called a Mannheim curve,
and β a Mannheim partner curve of α. The pair {α, β} is said to be a Mannheim
pair.

The curve α : I ⊂ R→ R3 in 3-dimensional Euclidean space is parametrized by
the arc-length parameter s and from definition above the Mannheim partner curve
of α is given by β : J ⊂ R→ R3 in 3-dimensional Euclidean space R3 with the help
of Figure 1 such that

β(s) = α(s) + λ(s)B(s); s ∈ I
where λ is a smooth function on I and B is the binormal vector field of α. We
should remark that the parameter s generally is not an arc-length parameter of β.

2.2. The geometry of Walker manifold. A Walker n-manifold is a pseudo-
Riemannian manifold, which admits a field of null parallel r-planes, with r ≤ n

2 .
The canonical forms of the metrics were investigated by A. G. Walker ([3]). Walker
has derived adapted coordinates to a parallel plan field. Hence, the metric of a
three-dimensional Walker manifold (M, gεf ) with coordinates (x, y, z) is expressed
as

gεf = dx ◦ dz + εdy2 + f(x, y, z)dz2 (2.1)

and its matrix form as

gεf =

 0 0 1
0 ε 0
1 0 f

 with inverse (gεf )−1 =

 −f 0 1
0 ε 0
1 0 0


for some function f(x, y, z), where ε = ±1 and thus D = Span∂x as the paral-
lel degenerate line field. Notice that when ε = 1 and ε = −1 the Walker manifold
has signature (2, 1) and (1, 2) respectively, and therefore is Lorentzian in both cases.

It follows after a straightforward calculation that the Levi-Civita connection of
any metric (2.1) is given by [2]:

∇∂x∂z =
1

2
fx∂x, ∇∂y∂z =

1

2
fy∂x,

∇∂z∂z =
1

2
(ffx + fz)∂x +

1

2
fy∂y −

1

2
fx∂z (2.2)

where ∂x, ∂y and ∂z are the coordinate vector fields ∂
∂x

, ∂
∂y

and ∂
∂z

, respectively.

Hence, if (M, gεf ) is a strict Walker manifolds i.e., f(x, y, z) = f(y, z), then the

associated Levi-Civita connection satisfies [2]

∇∂y∂z =
1

2
fy∂x, ∇∂z∂z =

1

2
fz∂x −

ε

2
fy∂y. (2.3)

Journal of Cyber Security(2096-1146) || Volume 7 Issue 12 2025 || www.journalcybersecurity.com

Page No: 2
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Note that the existence of a null parallel vector field (i.e f = f(y, z)) simplifies
the non-zero components of the Christoffel symbols and the curvature tensor of the
metric gεf as follows:

Γ1
23 = Γ1

32 =
1

2
fy, Γ1

33 =
1

2
fz, Γ2

33 = − ε
2
fy (2.4)

Proposition 2.2. Starting from local coordinates (x, y, z) for which (2.1) holds,
Let

e1 = ∂y, e2 =
2− f
2
√

2
∂x +

1√
2
∂z, e3 =

2 + f

2
√

2
∂x −

1√
2
∂z (2.5)

Then they formed a local pseudo-orthonormal frame fields on (M, gεf ).

Proof. Indeed, we get gεf (e1, e1) = ε, gεf (e2, e2) = 1 and gεf (e3, e3) = −1. �

Let now u and v be two vectors in M . Denoted by (~i,~j,~k) the canonical frame
in R3.

Proposition 2.3. For the covariant derivatives of the Levi-Civita connection of
the left-invariant metric g defined above, we have

∇eiej =

 0 1
4fy(e2 + e3) − 1

4fy(e2 + e3)
1
4fy(e2 + e3) − ε

4fye1
ε
4fye1

− 1
4fy(e2 + e3) ε

4fye1 − ε
4fye1

 . (2.6)

Proof. The curvature tensor field of ∇ is given by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

where X,Y, Z ∈ Γ(M). If we denote by

Rijk = R(ei, ej)ek,

where the indices i, j, k take the values 1, 2, 3. Then the non-zero components of
the curvature tensor field are [2]

R121 = −R131 = −1

4
fyy(e2 + e3),

R122 = −R123 = −R132 = R133 =
ε

4
fyye1. (2.7)

�

The vector product of u and v in (M, gεf ) with respect to the metric gεf is the
vector denoted by u×f v in M defined by

gεf (u×f v, w) = det(u, v, w) (2.8)

for all vector w in M , where det(u, v, w) is the determinant function associated to
the canonical basis of R3.

Proposition 2.4. If u = (u1, u2, u3) and v = (v1, v2, v3) are two vectors in R3

then by using (2.8), we have:

u×f v =

(∣∣∣∣u1 v1

u2 v2

∣∣∣∣− f ∣∣∣∣u2 v2

u3 v3

∣∣∣∣)~i− ε ∣∣∣∣u1 v1

u3 v3

∣∣∣∣~j +

∣∣∣∣u2 v2

u3 v3

∣∣∣∣~k (2.9)

Proof. We develop the two member of equation and after a simple calculation using
the determinant function we get the resultats. �
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Proposition 2.5. [2] The Walker cross product in M has the following properties:

(1) The Walker cross product is bilinear and anti-symmetric.
(2) X ×f Y is perpendicular both of X and Y .
(3) The frame defined in (2.5) verify the following: e1×f e2 = −e3, e2×f e3 =
−e1 and e3 ×f e1 = e2.

Proof. We use the definition of cross product and compute. �

3. Mannheim curves in strict Walker 3-manifold

Let α : I ⊂ R −→ (M, gεf ) be a curve parametrized by its arc-length s.
The Frenet frame of α is formed by the vectors T , N and B along α where T is the
tangent, N the principal normal and B the binormal vector.

Theorem 3.1. [2] They satisfied the Frenet formulas ∇TT (s) = ε2κ(s)N(s)
∇TN(s) = −ε1κT (s)− ε3τB(s)
∇TB(s) = ε2τ(s)N(s)

(3.1)

where κ and τ are respectively the curvature and the torsion of the curve α, with
ε1 = gf (T ;T ); ε2 = gf (N ;N) and ε3 = gf (B,B).

Proof. We can consider the unit speed normal which is opposite of the principal
normal vector. �

Theorem 3.2. For a Mannheim curve α thre exists a Mannheim partner β such
that {α, β} is a pair of Mannheim curves.

Proof. As N and B∗ are linearly dependants,

β = α− λB∗

= α− λkN. (3.2)

�

Theorem 3.3. Let (α, β) be a Mannheim pair in Walker manifold M . The distance
between corresponding points of the Mannheim partner curves in M is constant if
and only if the curvature of α is a constant.

Proof. Let {α, β} be a couple of Mannheim curves in a strict Walker 3-manifold.
We note {T,N,B} and {T ?, N?, B?} the Frenet frames of the curves α and β
respectively. According to the figure , we can write :

α (s) = β (s?) + λ (s?)B? (s?) (3.3)

By derivation of equation 3.3 we have :

dα (s)

ds

ds

ds?
=
dβ (s?)

ds?
+
dλ (s?)

ds?
B? (s?) + λ (s?)

dB? (s?)

ds?
(3.4)

Using the above equation 3.4 and the fact of N et B∗ coincide, and B∗ = kN we
have :

T (s)
ds

ds?
= T ? (s?) + λ

′
(s?) kN (s) + λ (s?) ε∗2τ

? (s?)N? (s?) (3.5)

As N and B? are linearly dependent, g (T,B?) = k.g (T,N) = 0 and we have :

λ
′
(s?) = 0 and in that case λ is a non zero constant. On ather hand, according to

the definition of distance function between tzo points we get :
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d (β (s?) , α (s)) = ||α (s)− β (s?) ||
= |λ (s?) | ||B? (s?) ||

= |λ|
√
〈B?, B?〉

= |λ|
√
〈kN (s) , kN (s)〉

= |λ||k|
√
|gεf (N,N) |

= |λ||k|
√
|ε2|.

So the distance d (β (s?) , α (s)) is constant if k is constant. �

We etablish now the relation between curvatures and torsions of α and β at the
correspondants points.

Theorem 3.4. Let {α, β} be a pair of Mannheim in Walker 3-manifold. Then the
torsion of β is obtained as

τ∗ =
ε1

ε3ε∗2
.
κ

λτ

Proof. According to the relation T
ds

ds∗
= T ∗ + ε∗2λτ

∗N∗. we get

T =
ds∗

ds
T ∗ + ε∗2λτ

∗ ds
∗

ds
N∗. (3.6)

And we have {
T = cosθT ∗ + sinθN∗

B = −sinθT ∗ + cosθN∗ (3.7)

where θ is the angle between T and T ∗ at the corresponding points of α and β
respectively.

From (3.6) et (3.7), we have

cosθ =
ds∗

ds
, (3.8)

sinθ = ε∗2λτ
∗ ds

∗

ds
. (3.9)

By derivation of (3.2), we obtain :

dβ (s∗)

ds∗
=
dα (s)

ds

ds

ds∗
− kλdN

ds

ds

ds∗

⇒ T ∗ = T
ds

ds∗
+ kε1λκT

ds

ds∗
+ kε3λτB

ds

ds∗
,

T ∗ =
(

1 + kε1λκ
) ds
ds∗

T + kε3λτ
ds

ds∗
B. (3.10)

The equation (3.7) give {
cosθT ∗ = T − sinθN∗

sinθT ∗ = −B + cosθN∗
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⇒


T ∗ =

T − sinθN∗

cosθ

T ∗ =
−B + cosθN∗

sinθ
.

(3.11)

The equation

3.11⇒ T − sinθN∗

cosθ
=
−B + cosθN∗

sinθ

⇒ sinθ (T − sinθN∗) = cosθ (−B + cosθN∗)

⇒ sinθT − sin2θN∗ = −Bcosθ + cos2θN∗

⇒ sinθT +Bcosθ =
(
cos2θ + sin2θ

)
N∗.

According to cos2θ + sin2θ = 1, we get the equation :

N∗ = sinθT +Bcosθ,

⇒ N∗ = sinθT + cosθB.

And from the equation 3.7, we obtain :{
sinθN∗ = T − cosθT ∗

cosθN∗ = B + sinθT ∗

⇒


N∗ =

T − cosθT ∗

sinθ

N∗ =
B + sinθN∗

cosθ

(3.12)

3.12⇒ T − cosθT ∗

sinθ
=
B + sinθN∗

cosθ

⇒ cosθ (T − cosθT ∗) = sinθ (B + sinθT ∗)

⇒ cosθT − cos2θT ∗ = sinθB + sin2θT ∗

⇒ cosθT − sinθB =
(
sin2θ + cos2θ

)
T ∗.

Using
(
sin2θ + cos2θ

)
= 1, we have

T ∗ = cosθT − sinθB. (3.13)

D’o {
T ∗ = cosθT − sinθB
N∗ = sinθT + cosθB.

(3.14)

From (3.10) and (3.13), we obtain :

cosθ =
(

1 + kε1λκ
) ds
ds∗

, (3.15)
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sinθ = −kε3λτ
ds

ds∗
. (3.16)

By multiplication of the two equation (3.8) and (3.15), and (3.9) and (3.16) respec-
tively we get

cos2θ = 1 + kε1λκ,

sin2θ = −kε3ε
∗
2λ

2ττ∗.
(3.17)

Adding the equation (3.17) we have

cos2θ + sin2θ = 1 + kε1λκ− kε3ε
∗
2λ

2ττ∗.

And from cos2θ + sin2θ = 1 we have

1 + kε1λκ− kε3ε
∗
2λ

2ττ∗ = 1

⇒ −kε3ε
∗
2λ

2ττ∗ = 1− 1− kε1λκ

⇒ τ∗ =
ε1λκ

ε3ε∗2λ
2τ

⇒ τ∗ =
ε1κ

ε3ε∗2λτ
,

So we have τ∗ =
ε1

ε3ε∗2
.
κ

λτ
�

Theorem 3.5. Let {α, β} be a pair of Mannheim in Walker manifold. We have

ε3µτ − ε1λκ =
1

k
,

where λ and µ are nonzero real numbers.

Proof. We use the fact that

cosθ =
(

1 + kε1λκ
) ds
ds∗

et

sinθ = −kε3λτ
ds

ds∗

⇒ cosθ

1 + kε1λκ
=

ds

ds∗
, (3.18)

and

− sinθ

kε3λτ
=

ds

ds∗
. (3.19)

Adding the relations (3.18) and (3.19); and after calculation we get the result �
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4. Conclusion

In this paper we study the geometry of Mannheim curves in a strict Walker 3-
manifold. In the first time we introduced the geometric elements of the strict Walker
3-manifold by calculation of the Christoffel symbols, the Levi-Civita connection,
curvature and the cross product. The second concerned our results. In this paper,
two main results are obtained. The first one is that in contrast of the case of
Euclidean, the distanance between two corresponding points is nit constant. In the
second resultat we etablished the relation between the torsion of the partner and
the curvature and torsion of Mannheim curve. This paper show that some resultats
in Euclidean space can be generalized in the Walker manifold. In the future, we
can extend our study to the Mannheim curves in the Walker 4-manifolds.
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