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ON MANNHEIM CURVES IN A STRICT WALKER
3-MANIFOLD

RENOVAT NKUNZIMANA AND CHRISTOPHE MBABARE NGIRENTE

ABSTRACT. In this paper we study the geometry of Mannheim curves in a strict
Walker 3-manifold and we obtain explicit parametric equations for Mannheim
curves and timelike Mannheim curves, respectively. We determine the distance
between two corresponding points of the Mannheim pair of curves and show
that distance depending of the curvature. We discuss the relationship between
the curvature and torsion of a pair of Mannheim curves in a strict Walker
Manifold. We finish by an example of Mannheim pair curves for illustrate the
result.

1. INTRODUCTION

In the study of the fundamental theory and the characterizations of space curves,
the corresponding relations between the curves are the very interesting and impor-
tant problem. The well-known Bertrand curve is characterized as a kind of such
corresponding relation between the two curves. For the Bertrand curve «, it shares
the normal lines with another curve 3, called Bertrand mate or Bertrand partner
curve of . In this paper, we are concerned with another kind of associated curves,
called Mannheim curve and Mannheim mate (partner curve) in history of differen-
tial geometry. In this work, we call them simply as Mannheim pair.

From the elementary differential geometry we know clearly about the character-
izations of Bertrand pair. But there are rather few works on Mannheim pair.
According to [6] it is just known that a space curve in R? is a Mannheim curve
if and only if its curvature k and torsion k satisfy the formula x = A(x? + 72),
where X is a nonzero constant. In [I0], B. Y. Chen characterizes the curve which
satisfies = = as + b,a # 0. Here, our examples will give the curve which satisfies
T = sinh(s).

In [6], the autors give the neccesary and sufficient conditions for a curve in 3 Eu-
clidean space to be a Mannheim partner of a giveen curve. They show also that the
Mannheim curve of generalized helix is a straight line. In [5], the authors proved
that the distance between corresponding points of the Mannheim partner curves in
three dimensional Heisenberg group is is constant.

Motivated by the above works, in this paper, we study the Mannheim partner
curves in three dimensional Walker manifold M?3. We will give the necessary and
sufficient conditions for a curve to be a Mannheim partner curve of an other curve
in three Walker Manifold. We detrmine the Mannheim partner of the generalized
and the slant helices.

The paper is organised as follow: in section 2, we give some preliminaries tools about

2010 Mathematics Subject Classification. Primary 53A10; Secondary 53C42, 53C50.

Key words and phrases. Mannheim curve, curvature, torsion, Mannheim partner, Walker
manifolds.

Page No: 1



Journal of Cyber Security(2096-1146) || Volume 7 Issue 12 2025 || www.journalcybersecurity.com

2 RENOVAT NKUNZIMANA AND CHRISTOPHE MBABARE NGIRENTE

Mannheim curves Walker 3-dimensional space. In section 3, we study Mannheim
curves in a strict Walker 3-manifolds and the last section talks about Mannheim
partner of helices.

2. PRELIMINARIES
2.1. Mannheim partner curves.

Definition 2.1. [6] Let R3 be the 3-dimensional Euclidean space with the standard
inner product. If there exists a corresponding relationship between the space curves
a and B such that, at the corresponding points of the curves, the principal normal
lines of a coincides with the binormal lines of 3, then « is called a Mannheim curve,
and B a Mannheim partner curve of a. The pair {a, B} is said to be a Mannheim
pair.

The curve o : I C R — R3? in 3-dimensional Euclidean space is parametrized by
the arc-length parameter s and from definition above the Mannheim partner curve
of o is given by #: J C R — R? in 3-dimensional Euclidean space R? with the help
of Figure 1 such that

B(s) =a(s) + A(s)B(s); sl
where A is a smooth function on I and B is the binormal vector field of a. We
should remark that the parameter s generally is not an arc-length parameter of (.

2.2. The geometry of Walker manifold. A Walker n-manifold is a pseudo-
Riemannian manifold, which admits a field of null parallel r-planes, with r < 5.
The canonical forms of the metrics were investigated by A. G. Walker ([3]). Walker
has derived adapted coordinates to a parallel plan field. Hence, the metric of a

three-dimensional Walker manifold (MM, g) with coordinates (x,y, z) is expressed

as
gy =drodz+ edy® + f(x,y, 2)dz* (2.1)
and its matrix form as
0 0 1 —f 0 1
g5=10 € 0 with inverse (¢5)""'=|[ 0 € 0
10 f 1 0 0

for some function f(x,y,z), where e = +1 and thus D = Spand, as the paral-
lel degenerate line field. Notice that when € = 1 and € = —1 the Walker manifold
has signature (2, 1) and (1, 2) respectively, and therefore is Lorentzian in both cases.

It follows after a straightforward calculation that the Levi-Civita connection of
any metric (2.1)) is given by [2]:

1 1
Vazaz = ifmaxa vc’)yaz = §fy8ma
1 1 1
Vazaz = i(ffx‘i‘fz)az“"ifyay_ifxaz (2‘2)
where 0., 9, and 0, are the coordinate vector fields %, 8% and %, respectively.

Hence, if (M, g%) is a strict Walker manifolds i.e., f(z,y,2) = f(y,2), then the
associated Levi-Civita connection satisfies [2]

1

1
Vo, 0z = ifyﬁz, Vo, 0z = 3
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Note that the existence of a null parallel vector field (i.e f = f(y,z)) simplifies
the non-zero components of the Christoffel symbols and the curvature tensor of the
metric g as follows:

1 1 €
F%QS = Fé? = §fy7 F§3 = §fza F§3 = *ify (24)
Proposition 2.2. Starting from local coordinates (x,y,z) for which holds,
Let
2 f 1 2+ f 1

BN ARV A N

Then they formed a local pseudo-orthonormal frame fields on (M, g;)

a, (2.5)

€1 :3y, €2 =

Proof. Indeed, we get g% (e1,e1) = €, g§(e2,e2) = 1 and g§(es, e3) = —1. O

Let now u and v be two vectors in M. Denoted by (7, j, k) the canonical frame
in R3.

Proposition 2.3. For the covariant derivatives of the Levi-Civita connection of
the left-invariant metric g defined above, we have

0 %fy(e2+€3) *%fy(@*@i’))
Ve,e5 = %fy(@ + e3) —1fyer Tfyer . (2.6)
—ify(ea +e3) ifyer —ifyer

Proof. The curvature tensor field of V is given by
R(X,Y)Z =VxVyZ —VyVxZ —Vxy|Z
where X,Y, Z € I'(M). If we denote by
R;ji = R(e;, e;)ex,
where the indices 7, j, k take the values 1,2,3. Then the non-zero components of
the curvature tensor field are [2]

1
Rio1 = —Ry31 = _nyy((fZ +e3),

€
Rigo = —Ri93 = —Ry32 = Ri33 = nyyeb (2.7)
O

The vector product of u and v in (M, g;) with respect to the metric g% is the
vector denoted by u x v in M defined by

g5 (u x5 v,w) = det(u, v, w) (2.8)

for all vector w in M, where det(u, v, w) is the determinant function associated to
the canonical basis of R3.

Proposition 2.4. If u = (uy,us,u3) and v = (v1,v2,v3) are two vectors in R¥
then by using (@, we have:
) P

uva:< —f

Proof. We develop the two member of equation and after a simple calculation using
the determinant function we get the resultats. (I

uyp U1
Uz V2

U2 V2
usz U3

uyp U1
us U3

-

U2 V2

IR (2.9)
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Proposition 2.5. [2] The Walker cross product in M has the following properties:

(1) The Walker cross product is bilinear and anti-symmetric.

(2) X x3Y is perpendicular both of X andY .

(3) The frame defined in verify the following: e1 X jeq = —es3, ea Xpe3 =
—ey and ez Xf €1 = eg.

Proof. We use the definition of cross product and compute. O
3. MANNHEIM CURVES IN STRICT WALKER 3-MANIFOLD

Let a: I CR — (M, g;) be a curve parametrized by its arc-length s.
The Frenet frame of « is formed by the vectors T', N and B along o where T is the
tangent, N the principal normal and B the binormal vector.

Theorem 3.1. [2] They satisfied the Frenet formulas

VrT(s) = ear(s)N(s)
VrN(s) = —ekrT(s)—esTB(s) (3.1)
VrB(s) = €a7(8)N(s)

where k and T are respectively the curvature and the torsion of the curve «, with
e1=97(T;T);e2 =gr(N;N) and e3 = g¢(B, B).

Proof. We can consider the unit speed normal which is opposite of the principal
normal vector. O

Theorem 3.2. For a Mannheim curve « thre exists a Mannheim partner 8 such
that {«, B} is a pair of Mannheim curves.

Proof. As N and B* are linearly dependants,

8 =a— AB*
=a— MkN. (3.2)

O

Theorem 3.3. Let (o, 3) be a Mannheim pair in Walker manifold M. The distance
between corresponding points of the Mannheim partner curves in M is constant if
and only if the curvature of « is a constant.

Proof. Let {a, 8} be a couple of Mannheim curves in a strict Walker 3-manifold.
We note {T,N,B} and {T*,N*, B*} the Frenet frames of the curves a and f
respectively. According to the figure , we can write :

a(s)=p06(s*)+ A(s)B*(s) (3.3)
By derivation of equation [3.3] we have :

da(s) ds  dB(s*)  dX(s*) .. . o dB* (s¥)
ds ds*  ds* + ds* B (sT) +A(s9) ds* (34)
Using the above equation [3.4] and the fact of N et B* coincide, and B* = kN we
have : J
T (s) dss* =T*(s*) + A (s*) kN (s) + A(s*) ebr* (s*) N* (s¥) (3.5)

As N and B* are linearly dependent, g (7, B*) = k.g(T,N) = 0 and we have :
A (s*) = 0 and in that case A is a non zero constant. On ather hand, according to
the definition of distance function between tzo points we get :
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d(B(s),a(s)) = lla(s) = B(s")]]
= A 1B (M)
— VB, B)
— AVGRN (3) . kN (5))

= [Al[E]y/1g7 (N, N) |

= [Allk]V/]ea]-

So the distance d (5 (s*),«(s)) is constant if k is constant. O

We etablish now the relation between curvatures and torsions of a and § at the
correspondants points.

Theorem 3.4. Let {«, 5} be a pair of Mannheim in Walker 3-manifold. Then the

torsion of B is obtained as
€1 R

*

egel AT
. . ds
Proof. According to the relation TF =T* 4+ e5AT*N*. we get
S

ds* __, or L as”
T= dsT + 5T I

N*. (3.6)

And we have

{T = cosOT* + sindN* (3.7)

B = —sindT* 4+ cosON*

where 0 is the angle between 1" and T* at the corresponding points of « and

respectively.
From (3.6)) et , we have
ds*
0= 3.8
cos 75 (3.8)
ds*
ind = esAr* . 3.9
sing = exAT" —- (3.9)
By derivation of (3.2)), we obtain :
df(s") _ do(s) ds _ . dN ds
ds* ds ds* ds ds*
d d d
= T% =T~ 4 key AT + kesAT B,
ds* ds* ds*
d d
T = (1 n kel)\n) By e Z B, (3.10)
ds* ds*

The equation (3.7)) give

cosT* =T — sinfN*
sindT* = —B + cosON*
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T — T — sindN*
cost
sind ’

The equation

T —sindN*  —B + cosON*
cost o sinb

3.11| =

= sinf (T — sindN*) = cost (—B + cosON™)
= sin0T — sin*9N* = —Bcosf + cos>0N*

= sindT + Bcost = (00520 + sin20) N*.
According to cos?0 + sin?0 = 1, we get the equation :

N* = sin0T + Bcosb,

= N* = sinfT + coshB.
And from the equation [3.7] we obtain :
sindN* =T — cos0T™*
cosON* = B + sinfT™*

Nt = T— c.ozeT*
=4 BAShen (3.12)
Nf= ——
cosbf
s 19 T — C.OSHT _ B + sin N
sinb cosf

= cos0 (T — cosfT*) = sinf (B + sinfT™")
= cos0T — cos*0T* = sinB + sin*0T*

= cosfT — sindB = (sin20 + 00520) T*.

Using (sin20 + 00829) =1, we have

T* = cosdT — sinfB. (3.13)
D’o
™ = c?sﬂT — sindB (3.14)
N* = sinfT + cosfB.
From ([3.10) and (3.13)), we obtain :
cos = (1 n kslm) ds (3.15)
ds*’
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. ds

sinf = —kegAT—. (3.16)
ds*

By multiplication of the two equation (3.8) and (3.15)), and (3.9) and (3.16]) respec-

tively we get

0820 = 1 + key Mk,

3.17
5in?0 = —kegey \2r7*. (8.17)
Adding the equation (3.17) we have
c0s%0 4 5in*0 = 1 4 key Ak — keges\2r7*.
And from cos?60 + sin?6 = 1 we have
1+ ke s — k€3€§)\27'7* =1
= —ke3eb 2T =1 -1 — ke s
o 81)\/*6
T =
€35 \2T
- « 1Rk
T = ,
E3EZAT
So we have T*:g—l*.i O
€365 AT

Theorem 3.5. Let {«a, 8} be a pair of Mannheim in Walker manifold. We have

1
ESUT — E1AK = —,
k
where X\ and p are nonzero real numbers.

Proof. We use the fact that

ds
cost = (1 + ksl)\n) I
et
sinf = —kez AT ds
ds*
cost ds
= = 1
= 14+ ke e ds*’ (3.18)
and
sinf ds
_ - . 1
kesAt  ds* (3.19)

Adding the relations (3.18]) and (3.19)); and after calculation we get the result [
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4. CONCLUSION

In this paper we study the geometry of Mannheim curves in a strict Walker 3-
manifold. In the first time we introduced the geometric elements of the strict Walker
3-manifold by calculation of the Christoffel symbols, the Levi-Civita connection,
curvature and the cross product. The second concerned our results. In this paper,
two main results are obtained. The first one is that in contrast of the case of
Euclidean, the distanance between two corresponding points is nit constant. In the
second resultat we etablished the relation between the torsion of the partner and
the curvature and torsion of Mannheim curve. This paper show that some resultats
in Euclidean space can be generalized in the Walker manifold. In the future, we
can extend our study to the Mannheim curves in the Walker 4-manifolds.
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