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Abstract

In this paper we construct the models foliations on pseudo Anosov bundle using
the Gyhs Thurston’s method which consists of the suspension of diffeomorphism
followed by desingularization and we study some properties of those foliations.

1 Introduction

In [3] E. Ghys and V. Sergiescu showed that if F isa C", r > 2 codimension 1 transversely
orientable foliation without compact leaf on a T2-bundle t : V —— S* over St , then F
is C"-2 conjugate to one of the model foliations constructed on that bundle. The same
autors chowed that the models foliations are structurally stable. Let ¢y be an Anosov-
diffeomorphism of the torus 72 induced by a matrix A € SL(2; Z) with trA > 2. E. Ghys
and V. Sergiescu (see [3]) built the 3 manifold 73,by suspension of ¢ and classified all

C'(r = 2) codimension 1 foliations without compact leaves.

Let 2 be the genus 2 closed surface. Using the method of branched covering kindly chosen,
we obtained from a pseudo-Anosov diffeomorphism ¢ of . The 3 manifold V 3 is built by
suspension of ¢. Unlike TA3, there is no completed theorem of classification of codimension
1 foliations without compact leaves on V3. If F is a foliation without compact leaves on

a pseudo- Anosov bundle v} the main dificulty to get a complet classification theorem

is because it is dificult as in an Anosov bundle to get a fiber S so that the singular
foliation Fysx{oy) coincides with Fjsx13) and to classify the foliation of Fysxo;17). There
are partial results in this direction. For example H. Nakayama (see [6]) classified up to
covering, all transversely affine foliation without compact leaves and in the Euler class of
the fibration. In the present paper we extend the construction of model foliations on a

pseudo Anosov 3 bundles which fibers are surfaces of genus. We note g > 2 V2 a such
bundle. We give some properties of those models foliations in particular we show that
those models are close to the fibration and so have the same Euler class as the fibration.
Our paper is organised as follow. In the first two paragraphs we gave the construction of
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models foliations on some Anosov bundle over S and models foliations on some pseudo-
Anosov bundle over S! to understand the topics. In the last paragraph we analyse some
properties of models foliations and foliations without compact leaves on V3¢WhiCh are in
improved general position.

Indeed, in [10] we have classified, up monotonic equivelence, all taut foliations on a
pseudo-Anosov bundle which is hyperbolic and which have the same Euler class as fibra-
tion. Here we show that every foliations without compact leaf and which is improved
general position on 3 pseudo Anosov bundles, is conguate to the models foliations.

2 Preliminaries

When we put together all the maximal integral manifolds of a p-dimensional involutive

distribution D, we obtain a decomposition of M into p-dimensional submanifolds that
fit together locally like the slices in a flat chart. We define a foliation of dimension p or

codimension n — p on a n-manifold M to be a collection of disjoint, connected, immersed
p-dimensional submanifolds of M , called leaves of foliation, whose union is M and such

that in a neighborhood of each point x € M there is a smooth chart (U, ¢), called flat
chart for the foliation, with the property that ¢(U ) is a product of connected open sets

V X W € RP X R"P, and each leaf of the foliation intersects U in either the empty set

or a countable union of p-dimensional slices of the form x**! = ¢P*t, . - -, x" = ¢". Our
study is limited on the foliations of codimension one on the 3-manifolds; it means that

the leaves of the foliations are surfaces. Locally, we have some things like that

R™
A
by

Figure 1: Local representation of a foliation
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For example [1] the collection of connected components of the curves in the (y, z)-plane
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defined by the following equations

C

z =sec(y)+c, c€eR
y =(k+3) kezZ

is a foliation on a plane.

o

=

Figure 2: A foliation on R?

If we rotate the curves of this foliation around the z-axis, we obtain a 2-dimensional
foliation of R® in which some of the leaves are diffeomorphic to disks and some are diffeo-
morphic to the cylinders.

1 !

Figure 3: A foliations on R3

A second example [1], we consider the 2-dimensional torus T2 with coordinates (x, y).
The subbundle K spanned by the vector field X = 2 + a2 with o € R is a foliation.
If o is irrational, the leaves of K are immersed copies of the line wrapping around the
torus infinitely many times, and each leaf is dense. In this case, K is called the Kronecker
foliation. And if a is rationnal K is diffeomorphic to a circle.
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Figure 4: A linear foliation on T2

A foliation F on a Riemannian manifold (M, g) is called minimal if all its leaves are
minimal surfaces in (M, g) (i.e. they locally minimize area; for any compact piece K of
a leaf, any small perturbation of K rel ok will have bigger area; that is equivalent to
each leaf having zero mean curvature). A foliation F on M is called taut if there is a
Riemannian metric g such that £ is minimal in (M, g). (See [1], ch. 10 for a general
discussion.)

Remark 2.1. In the special case of a codimension 1 foliation, tautness is equivalent to

the existence of a dimensional manifold transverse to F and crossing all the leaves. A
similar condition is too strong for higher codimensions.

3 Model foliations on pseudo-Anosov bundles

3.1 Elementary foliations on D? x S!

We will construct two foliations on D? x S? transverse to boundary 8(D? x S?') which will
serve as surgery of model foliations on the whole bundle.

A foliation whithout singularity on T2

On St =10, 2]/0 ~ 2 we consider the function f defined by

f:002] —— R
y —— z=f(y)=Llog | secy |, together with the vertical lines cos y=0
We have f-1(0) = {1,45,45,42;. We consider on T2, the foliation Fx defined by the 1-form

wk = df + kfdz, where (y, z) are the coordonates on R? and T2 = R2/Z2. The only com-

pact leaves of Fx are T x S! where T is a connected component of f -1(0). The compact

leaves have the holonomy and the no compact leaves roll up to compact leaves. So F« is
Page No: 4



Journal of Cyber Security(2096-1146) || Volume 7 Issue 12 2025 || www.journalcybersecurity.com

a foliation with four Reeb plane components (see Figure 1). F« is a one parameter family
of transversely affine foliations with holonomy on T2.

If we rotate the curves of this foliation around the z-axis, we obtain a 2-dimensional
foliation of R® in which some of the leaves are diffeomorphic to disks and some are diffeo-
morphic to the cylinders

A family of regular foliations on D? x S?!

Consider the 1-form wo = xdx — ydy of saddle type on R? and the 1-form Q 4 = A%wo +
dz,A € N*on R? X R. It is the nonsingular 1-form satisfying dQ = da A Q where

@1 = (LogA)dz. Then Q , defines a transversely affine foliation on R2 X R. We consider
the function
hi: RPXR —— R?XR
(u,z) —— (Au,z+1)

The quotient by the action generated by ha gives a cyclic covering R> X R — R? X S,
The orded pair (Q,, @a) is invariant by this action and passes to the quotient in an orded
pair (Q, aa) which defines a regular foliation on R? x S1.

3.2 The explicit model foliations on V

Now we can construct the model foliations on V' using the Ghys-Thurston method sketched
in many works one of which being [6]. The method consists of a suspension of the stable

and unstable foliations followed by a desingularization. On 2 X R, we consider the 1-form
Q' = A'w* +dt where ¢ is C= with support in a canonical neighborhood of singularities
of w*. The form Q* is invariant by the action (x, t) ~ (¢(x), t + 1) and passes to the

quotient V = £ X R/ ~ inaminimal transversely affine and singular foliation H* which
has a finite number of contact circles yy, ..., y» With the fibration of vV over S'. According

to the last constructions and the lemma below, each circle y; has a tubular neighborhood
V; diffeomorphic to D? x S? foliated as in the figure below (Figure 2), such that dV;
is transverse to H* and H,,, is the foliation Fx on the torus T> described above for

k = LogA. We define in the same way H- using w~.
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Figure 5: A foliated neigborhood of the singularity [6]

Lemma 3.1. H* or H- is fixed as above.

a) There exists a neighborhood M C V of {0} x S diffeomorphic to D? x S* such that
the boundary oM of M is transverse to H* or H-.

b) For all M satisfying a), the trace of H* or H- on oM is diffeomorphic to foliation
F« of T2 for k = LogA or k = —LogA.

Proof. Let 01, 02, 03 and o4 be the separatrices of the saddle singularity 0 of Q*. All the
leaves o; X S! of H* have holonomy. We can take a tubular neighborhood M C V of
0 X S'suchthat oM * T2 is transverse to H*. The holonomy of the leaves o; X S is
determined by the linear holonomy —LogAdz. Therefore H*,, is a foliation on torus T2

with four circular compact leaves having holonomy. The other leaves of H*,,, are not
compact and they spiral on the four compact leaves to give a foliation of T2 with four
Reeb plane components and whose compact leaves have —LogA as coefficient of holonomy;

H 5w is then a foliation of type Fi for k = LogA. O

We desingularize the foliations H* and H- as follows:

Let S be the finite singular set common to w* and w-. We have constructed above
two foliations on D? x S* which are used to complete H* and H- by surgery on whole 3-
manifold V. On (2 — S) X R, the 1-forms A'w* + dt and A'w* — dt define two nonsingular
foliations Vi and Vi on vV — S, with S = Uy ,;which have respectively x(7r) and
—x(Tm) as Euler classes. Each circle y; of S has a neighborhood W; whose boundary
is transverse to V; (i = 1, 2). So we cut the V; and they are replaced by the W; foliated
as in the figures below. When the transverse orientation of H*|dV; is the same as the
orientation of y;, we replace V; by W; with foliation V,, otherwise V; is replaced by w;
with foliation V,. We obtain two regular foliations F%, and F2 transversely affine without
compact leaf on V. Likewise, H- gives two regular foliations F* and F2.
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Figure 6: Regular foliation after desingularization

4 Some properties of models foliations

In this section, we give some properties of model foliations constructed above.

Proposition 4.1. The foliations F« are transversely affine foliations and are without
holonomy.

Proof. Indeed, dwx = kdf A dz = df A kdz and wk A kdz = df A kdz. Again, if we note
ax = kdz, we remark that ax is closed one forme. Hence wx = dwk A ax with ax a closed
1-form [2]. So F is transversely affine foliation for all k real number. L

Proposition 4.2. The model foliations constructed above having the same Euler class of
fibration are close to the fibration.

Proof. Let F and F model foliations of V which have the same Euler class as fibration 7.
The foliations F and F are defined by the 1-forms Q° = Alw* + dt and Q! = A-tw- + dt.
We consider the family of continues one parameter forms E- and F;, of transversely
affines foliations defined by Q* = mA'w* + dt and Q- = mA-'w* + dt. For m = 0,
F» and F- are fibrations for m >0, F* and F- have their holonomy representations

conjugate to those of F and F [11]. And so are respectively isotopic. L

5 Foliations which are in improved general position

The usual technique in studing foliations of 3-manifolds is to restrict them to their 2
dimensional submanifolds. Unfortunately the foliations induced on those surfaces are not
always simple. Indeed they have singularities which are generically of Morse type (i.e
saddle or center singularities). In some cases, singularities can be reduced
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Theorem 5.1. Let V be a closed 3-manifold and F a C? taut foliation on V. Letp :
> — V be an embedding of a closed surface = in V. We assume that p« : T1Z — mV is
injective. Then p is isotopic to an embedding pr which is tangent to F, or transverse to
F except at a finite number of points which are saddle singularities with an even number
of separatrices for F.

This theorem is proved by Roussarie in the case where the surface = is torus T2 (see

[9]). In this paper we use the same technique with a surface of genus g > 2. Here we
show this theorem using a method of Riemannian geometry.

Proof. According to J. Hass [7] there exists a Riemannian metric g making all leaves of

F minimal submanifolds. Every fiber = is incompressible and so isotopic to a minimal
orientable and closed surface.

Applying Schoen-Yao result [8] we can say that p is isotopic to an embedding pr which is
minimal relatively to g and we use the same result on the intersections of minimal surfaces
according to which the trace of a minimal foliation on a minimal surface which is not a
leaf is a singular foliation whose saddle singularities have an even number of separatrices.
Then, by small isotopies, we can explode the 2n-branches saddle singularities into 4-
branches isolated saddle singularities. O

We give now the following definition:

Definition 5.2. Let F be a codimension 1 foliation on a hyperbolic bundle r: v —— S

a) We say that F is in general position with respect to the fibration 7t if :

i) there exists a finite family I C vV of embedded circles, said braid, such that
T.F=Tyrifandonly ifu €T.
i) every componenty of I' has a tubular neighborhood V (y) in which F is trans-

verse to it except at a finite number of points (restricted to any fiber) which
are singularities of type saddle or center type.

b) F is in improved general position if in ii) we have only saddle singularities.

We have the illustration of this definition at the figure bellow, in the case of fibers are
surfaces fo genus g = 2 (See Figure 7).

Proposition 5.3. Let V be a closed 3-manifold bundle over circle S* and F a C? taut
foliation on vV . If F has no compact leaf, then every fiber of V is isotopic to a closed

surface in optimal position (i.e transverse to F except at a finite number of points which
are saddles with 4 separatrices).

Proof. Indeed, the exact sequence of homotopy associated to the fibration shows that
the canonical injection of each fiber of V is injective. Then we apply the theorem above
to obtain the points of contact which are saddles with an even numbers of separatrices,
by sequence of small isotopies, we can explode all saddles into isolated saddles with 4
separatrices. ]
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Figure 7: A foliation in optimal position

Corollary 5.4. The models foliations construct above are in improved general position.

The following theorem gives a type of classification of taut foliations in improved general
position with respect to the fibration on atoroidal 3-manifolds bundles over circle St.

Theorem 5.5. [5] Let F be a codimension 1 taut foliation on a closed 3-manifold which

is a hyperbolic bundle t : Vv —— S! over S! with monodromy ¢ : 3 — = where 2 isa
closed oriented surface of genus g > 1 and having the same Euler class as the fibration.

Let F be a foliation induced by F on = X [0, 1] obtained by cutting V along a fiber Z.
If the foliation F is in improved general position with respect to fibration 7, then F is

isotopic to a product foliation Fo X [0, 1] where Fo is isotopic to a caracteristic foliation
of ¢.

Theorem 5.6. Any regular foliation F can be put in improved general position about
fibration using small isotopy.

Proof. To prove this theorem we suppose that the foliation F have no compact leaf.
According to theorem 5.1 and using lemma bellow.

Lemma 5.7. After operating a finite number of isotopies, every fiber £ of V is in optimal
position.

We show also that lemma

Lemma 5.8. Let 3 be a fiber of V which is in optimal position and consider a diffeomor-
phism ¢ of monodromy of V . Cutting V along 5, and note F , and F ; the two foliations
induced by F on 5 x {0} and 5o x {1}. Then for every singularity s of F o, there exists
aloop A:[0, 1] — 20 X [0, 1] such that A(0) = s; A(1) = ¢(s) and A is tranversal to Fo.

Proof. As F is without an interior compact leaf, if s is a singularity of F o, then ¢(s) = s
is a singular point of F ; while F ; = ¢.F,. Taking a loop A linked s and st; and L an
interior leaf of 2o X [0, 1]. The leaf L is compacteness.
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Let (uy, ..., up) be a finite distinguished covering for F. As L is not compact, for a

certain u; we have s € u; and there exists two plaques of L in uj. The we take a suitable
transveral J having ends in those two plaques. J N A is transversal to F. Modifying A by
an isotopy, we can suppose that A is transversal to F. O

Lemma 5.9. There is a loop A satisfying the conditions of the lemma above such that A
is transversal to the fibration.

Proof. As foliation which leaves are fiber of the fibration is taut, then we just take A as
the closed tansversal meeting all the leaves. ]

Hence the theorem O

6 Concusion

In this paper we studied some properties of a class of foliations without leaf compact on
a particular surface bundles over circle which fibers are surfaces of genus 2. We have
generalized the important resultat of R. Roussarie regarding bundles wich fibers are 2-
torus in optimal position to fibres of genus 2 which are in improved general position. That
complete the question asked in [10] which consisted in finding thes contitions for a taut
folition to be in impoved general position.
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