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Abstract

Bio-inspired optimization methods are potent for addressing high-dimensional and complex design spaces. The research
proposes a Paillier Homomorphic Encryption Optimization (PHEO) algorithm using the Hybrid Adaptive Greylag Goose—
Crayfish Optimization (A-GGCO), designed to enhance Paillier Homomorphic Encryption (PHE) parameters for secure and
scalable cloud applications. The algorithm incorporates a diversity-driven switching mechanism to balance global exploration
and local exploitation, drawing on the migratory behavior of geese and the adaptive movements of crayfish. An experimental
evaluation was conducted on leading optimizers, including PHE (baseline), GGO, CO, HO, JSO, and CSO-MA. Results
demonstrate that PHEO achieves faster convergence, higher accuracy, and robustness, supported by statistical validation
(Wilcoxon test, ANOVA, and effect-size analysis) and confirmed significant reductions in key generation, encryption, and
decryption times, with practical benefits for 10T healthcare and latency-sensitive cloud environments.

Keywords: Hybrid Optimization, Greylag Goose Optimization, Crayfish Optimization, Nature-Inspired Algorithms, Global—
Local Search

1. INTRODUCTION

The growing dependence on digital ecosystems such as cloud computing has amplified the need for cryptographic solutions
that balance security, efficiency, and scalability. Sensitive domains—including healthcare, finance, and smart infrastructures—
demand encryption schemes capable of safeguarding confidential data while supporting real-time responsiveness [1-3].

Classical public-key systems such as RSA and Elliptic Curve Cryptography (ECC) offer strong security guarantees but cannot
perform computations on encrypted data [4]. This limitation hinders their applicability in privacy-preserving scenarios such as
secure analytics or federated learning. Fully Homomorphic Encryption (FHE) addresses this gap by enabling arbitrary
computations over ciphertexts, but its extremely high computational cost makes it impractical for latency-sensitive or resource-
constrained environments [5,6].

As a more feasible alternative, Paillier Homomorphic Encryption (PHE) supports additive homomorphism with considerably
lower complexity than FHE, making it attractive for use cases such as secure data aggregation, encrypted cloud analytics, and
decentralized identity verification [7,8]. However, the reliance on large-number arithmetic in PHE—particularly during key
generation, encryption, and decryption—introduces computational overhead and latency bottlenecks, restricting its applicability
in large-scale or real-time deployments [9,10].

To overcome these bottlenecks, this research proposes a hybrid optimization framework that integrates Greylag Goose
Optimization (GGO) [11] and Crayfish Optimization (CO) [12] to adaptively tune PHE parameters, thereby reducing latency
without compromising cryptographic strength.

PHE is a widely used probabilistic asymmetric cryptographic scheme that supports additive homomorphism, making it crucial
in secure data processing tasks such as privacy-preserving computation and secure multi-party learning [7,8,13]. The primary
challenge in implementing PHE lies in selecting optimal cryptographic parameters—particularly the key size, generator, and
modulus structure—to balance security strength, computational efficiency, and encryption and decryption accuracy [9,10].

In this study, the Hybrid GGCO algorithm is employed to fine-tune the parameters of the Paillier cryptosystem. The optimization
objective is defined as minimizing computational latency (encryption and decryption time) while maximizing ciphertext
integrity and preserving the homomorphic property under modular arithmetic [11,12,14]. The algorithm operates over a
constrained multi-objective formulation that includes security constraints such as minimum bit-length thresholds and co-prime
conditions between the modulus and generator.

1.1. Paillier Homomorphic Encryption: The Paillier cryptosystem relies on modular arithmetic and the composite residuosity
class problem. It operates in three stages: (1) key generation, (2) encryption, (3) decryption. [7]
i. Key Generation

e  Select two large prime numbers p and g.

e Computen=p-gandA=Icm (p—1, g-1).

e Choose a random integer g such that geZ*; and assure g* mod n? permits computing the decryption function.

Page No: 1


https://orcid.org/0009-0008-5259-5444?lang=en
https://orcid.org/0009-0008-5259-5444?lang=en

Journal of Cyber Security(2096-1146) || Volume 7 Issue 11 2025 || www.journalcybersecurity.com

e Compute p = (L (g* mod n?)) *mod n, where L(x) =*=L
e The public key is (n, g) and the private key is (A, p). [7,10]

ii. Encryption
Given a plaintext meZ,, choose a random integer reZ*, and compute the ciphertext C as:
C=g" r" mod n?
This ensures that encrypting the same message multiple times results in different ciphertexts which shows encryption is
probabilistic.[7]

iii. Decryption
Given a ciphertext C, recover the plaintext m using the private key:
m=L (C*mod n? -umod n. [7]

iv. Homomorphic Property
Paillier encryption supports additive homomorphism, meaning the product of two ciphertexts results in the encryption of the

sum of their plalntexts ,15!j
=E(my) =g" n?
Cz =E(my) = gml 141 mod n?

MuItConlng the cg)pner;%( (r- 1) mod 2

Thus,

D(C)=mi+mzmodn
This property enables secure computations on encrypted data without decryption, making PHE valuable for secure aggregation
and privacy-preserving analytics [9].

1.2 Greylag Goose Optimization (GGO)

Greylag Goose Optimization (GGO) is a swarm-based metaheuristic inspired by the migratory behavior of greylag geese [11].
In nature, geese migrate in V-shaped formations, which reduces air resistance, enhances communication, and conserves energy.
Algorithmically, GGO models this cooperative structure by designating the best-performing candidate solution as the leader.
Leadership is dynamically reassigned to prevent stagnation, ensuring diversity and sustained global exploration. This
mechanism makes GGO effective for exploring broad search spaces [11,16].

1.3 Crayfish Optimization (CO)

The Crayfish Optimization (CO) algorithm is motivated by the adaptive foraging and defensive behaviors of crayfish [12].
Crayfish exhibit variable step-size movements: large exploratory steps when far from food and small, precise refinements when
close. In optimization, this translates into an adaptive local search that balances exploration and exploitation. CO is highly
effective for local refinement and convergence acceleration but may risk entrapment in local optima when used alone [12,17].

1.4 Motivation for Hybridization

Individually, GGO and CO offer distinct advantages but suffer complementary limitations. GGO excels in global exploration
but lacks precision in fine-grained exploitation, while CO provides strong local refinement but struggles to escape local minima.
By hybridizing GGO with CO (A-GGCO), a synergistic balance is achieved between exploration and exploitation [16,12,17].
This hybrid design directly addresses the latency challenges in Paillier Homomorphic Encryption by enabling more efficient
parameter optimization across key generation, encryption, and decryption [9].

2. RELATED WORK

Recent years have seen increasing interest in optimization-driven cryptography, where swarm intelligence and evolutionary
computation are leveraged to improve cryptographic efficiency. Studies have explored methods such as particle swarm
optimization (PSO) and differential evolution (DE) to optimize cipher parameters, while genetic algorithms (GA) have been
applied for adaptive key scheduling in symmetric encryption [14,17]. Within the domain of homomorphic encryption (HE),
prior research has primarily focused on algorithmic improvements and hardware acceleration. For instance, Paillier’s scheme
[7,15] and Gentry’s fully homomorphic encryption (FHE) framework [5] have been enhanced through GPU acceleration [9],
bootstrapping improvements [6], approximate arithmetic, and optimized modular arithmetic for cloud computing [8,13].
Standardization efforts also highlight the increasing maturity of HE systems [10]. While these advances significantly improve
performance, many require specialized hardware or involve trade-offs that may reduce general applicability.

From the perspective of metaheuristic hybridization, a growing body of research emphasizes the benefits of combining
complementary search strategies. Hybrid algorithms such as GWO-SSA (Grey Wolf Optimizer with Salp Swarm Algorithm),
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HHO-DE (Harris Hawks Optimization with Differential Evolution), and PSO-GA hybrids have consistently outperformed their
standalone counterparts in fields like engineering optimization, scheduling, and cloud resource allocation [16,14,17]. Recently,
novel bio-inspired algorithms such as Greylag Goose Optimization (GGO) [11] and the Crayfish Optimization Algorithm (CO)
[12] have shown strong potential across complex optimization landscapes. However, despite these successes, the application of
hybrid metaheuristics in cryptographic parameter optimization—particularly for Paillier homomorphic encryption (PHE)
[7,15]—remains relatively underexplored, with only a limited number of works targeting heuristic optimization for PHE

parameter tuning [13].

Thus, while swarm intelligence and hybrid metaheuristics have achieved remarkable success in other computational domains,
their integration with homomorphic encryption and cryptographic parameter optimization represents a promising yet
insufficiently investigated research frontier.
To better contextualize the existing research, Table 2.1 summarizes key contributions in homomaorphic encryption schemes and
optimization-driven approaches. Notably, only a few works directly address Paillier parameter optimization [Yang et al., 2021],
underscoring the need for hybrid, general-purpose, and cryptography-tailored metaheuristics.

Table 2.1. Summary of related works on homomorphic encryption and optimization

Reference (Author,
Journal/Year)

Method

Advantages

Limitation

Gentry, Communications of
the ACM, 2009

Fully Homomorphic
Encryption (FHE)

First complete scheme
supporting arbitrary
computations on ciphertexts

Extremely high
computational overhead,
impractical for real-time or
10T applications

Paillier, EUROCRYPT, 1999

Paillier Homomorphic
Encryption (PHE)

Supports additive
homomorphism, practical for
secure aggregation and cloud
storage

Modular exponentiation is
expensive; encryption and
decryption are high

Montgomery, Mathematics of
Computation, 1985; Barrett,
IEEE Trans. Computers,

Fast modular
exponentiation &

Improves the efficiency of
modular arithmetic operations

Limited impact for large-
scale homomorphic

1986 reduction schemes
. . . Hardware dependency
. GPU-based acceleration | High parallelism reduces
Wang et al., Springer, 2018 . . lacks general-purpose
of PHE encryption/decryption latency applicability

Li etal., IEEE Access, 2020

FPGA-assisted PHE
implementation

Faster modular arithmetic with
energy efficiency

Requires specialized
hardware, limited
portability

Storn & Price, J. Global
Optimization, 1997

Differential Evolution
(DE) for cryptographic

Strong global search capability,
effective in parameter tuning

Prone to premature
convergence in complex

Engineering Software, 2014

cryptographic parameter
selection

exploitation

optimization landscapes
Grey Wolf Optimizer May stagnate in local
Mirjalili et al., Advances in (GWO) for Balanced exploration and minima; performance

depends on parameter
tuning

Zhang et al., Applied Soft
Computing, 2019

Hybrid GWO-SSA
(Salp Swarm Algorithm)

Improved convergence speed
and solution quality

Algorithmic complexity
increases; not tailored to
homomorphic encryption

Yang et al., Information
Sciences, 2021

Heuristic optimization
for Paillier parameter
tuning

Reduction in key generation and
encryption latency

Evaluation limited to
single-objective
optimization

2.1. Research Gap

Despite progress in both homomorphic encryption and metaheuristic hybridization, several key gaps remain:
1. Limited Cryptography-Focused Hybrids: Most hybrid metaheuristics target classical optimization problems, with
minimal exploration of cryptographic parameter optimization.

2. PHE-Specific Optimization: EXxisting cryptographic optimization studies rarely address Paillier Homomorphic
Encryption, despite its practical trade-off between security and efficiency.

3. Latency-Aware Evaluation: Few works benchmark optimization in terms of end-to-end cryptographic latency (key
generation, encryption, decryption) under realistic workloads.
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4. Statistical Validation: Performance improvements are often reported without rigorous statistical testing, leaving
uncertainty about reproducibility and generalizability.

2.2. Contributions
To bridge these gaps, this work makes the following contributions:
1. PHEO Framework: A novel optimization algorithm that integrates GGO’s global search capability with CO’s adaptive
local refinement, tailored for optimizing PHE parameters.
2. Cryptographic Benchmarking: A latency-aware benchmarking for evaluating key generation, encryption, and
decryption times under varying PHE configurations, ensuring both efficiency and correctness.
3. Rigorous Statistical Analysis: Use of the Wilcoxon rank-sum test and ANOVA to confirm the significance and
robustness of improvements achieved by PHEO over baseline approaches.
4. Real-World Relevance: Demonstration of applicability in healthcare, ensuring compliance with privacy regulations
(HIPAA, GDPR).
By integrating adaptive hybrid optimization with Paillier homomorphic encryption, this research advances a secure, efficient,
and scalable cryptographic framework suited for next-generation cloud ecosystems.

3. METHODOLOGY: PHE OPTIMIZATION USING HYBRID A-GGCO
This section details the proposed methodology for optimizing Paillier Homomorphic Encryption (PHE) parameters using the

Adaptive Greylag Goose—Crayfish Optimization (A-GGCO) algorithm, steps shown in Fig.3.2. The objective is to minimize
cryptographic latency (in key generation, encryption, and decryption) while ensuring robustness and security compliance. The
hybridization combines global exploration from Greylag Goose Optimization (GGO) with local refinement from Crayfish
Optimization (CO), adaptively switching between phases according to population diversity.
3.1 Problem Formulation
The optimization problem is defined over the PHE parameter space:

o  Keysize (k), typically in bits (e.g., 512—4096),

e Modulus primes (p, q), whose selection influences both security strength and computation time,

e  Generator parameter (g), which impacts encryption speed and randomness.
The goal is to minimize the cryptographic cost function:

f(X) = Wi Tig(X) + WaTe(X) + WsTd(X) Q)
where Ty, Te, and Tq denote average execution times for key generation, encryption, and decryption, respectively, under
candidate parameter configuration x. The weights wi, wo, and wsz allow prioritization according to deployment needs (e.g., key
generation is critical in session-based systems, while decryption is critical in cloud query processing).

3.2 Adaptive Hybridization Strategy

To balance exploration (searching widely for efficient cryptographic parameters) and exploitation (fine-tuning around promising
configurations), A-GGCO uses a dynamic diversity threshold.

A population of n candidate parameter sets is initialized uniformly at random within security-admissible bounds:

X = {X1, X2, ..., Xn} € Uniform (L, U)¢ 2)
where [L, U] denotes valid ranges (e.g., 512-4096 bits for key size), and d is the dimensionality of the parameter space.

The minimum diversity threshold is defined as:

Din = 0.15-[U-LIl Wd 3

Diver§ity at iteratioq tis measuretd as 1the average deviation of candidates from the population mean:

Dt=_3r ||xt—x]||,where x = " Xt @
n =1 i no =17

This metric determines whether the algorithm enters the global exploration phase (GGO) or local exploitation phase (CO).
Global Exploration Phase (GGO)

When D'> Dmin, the population is sufficiently diverse, and global search dominates. The best cryptographic configuration acts
as the flock leader:

Xieader <— argmin f(x;) ©)

If the leader stagnates for AT iterations, it is perturbed to reintroduce diversity:

xtHl =yt +r.(xt -xt ), where r € Uniform (0,1) (6)
leader leader rand leader

Other candidates update positions via formation dynamics:

X+ =xt+a- (xt —x)+B-xX—-x)+N (0,0, (7)
1 1

i leader i j
where a,  are weights of leader attraction and neighbor interaction, while Gaussian noise prevents premature convergence.
Local Exploitation Phase (CO)
When D! < Dmin , the population converges, and fine-tuning is applied through crayfish-inspired movement. The adaptive step
size is:
Si = 1/ (1 + [IXi — Xoest][) ®)
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Candidates update their parameters as:

Xi < Xi +Si- R+ W (u, 6%), R~U(-1,1)¢ 9)
This ensures smaller refinements for candidates near the best cryptographic solution and larger exploratory steps for those
farther away.

Adaptive Diversity Update

To avoid bias toward either phase, the diversity threshold evolves:

Duin(t) = v- Dimin(t=1) + (1-y) -D", (10)
where y € [0,1] controls smoothing. This mechanism adaptively balances exploration and exploitation across generations.
Stopping Criteria and Output

The process repeats until a stopping criterion is met: either a maximum iteration limit (Tmax) or evaluation budget (Emax). The
output is the optimal PHE parameter set Xpest that minimizes execution cost while meeting security constraints (e.g., key size >
2048 bits) along with its fitness value fyest.

Space

A-GGCO
Optimized Key Performance
Configuration Validation

Fig. 3.2. PHE Optimization Process

[ PHE Parameter ]

3.3 Algorithm Steps

The operational workflow is summarized in Algorithm: PHEO and visually represented in Fig. 3.3:
1. Initialization: Generate population and set initial diversity threshold Dumn.
2. Evaluation: Assess fitness and track the global best solution.
3. Diversity Check: Calculate D.
o If D' >Dmin : perform GGO-based global exploration.
o Else: perform CO-based local exploitation.
4. Leader Switching & Adaptation: If no progress is observed, perturb leaders (GGO) or adapt step sizes (CO).
Threshold Update: Adjust Dmin dynamically based on progress.
6. Termination: Stop when iteration or evaluation limits are reached, and return the best solution.

o

Algorithm PHEO: Paillier Homomorphic Encryption Optimization

Input:
n : Population size
[L, U] : Lower and upper bounds of parameter space
Tmax : Maximum iterations
Emax : Maximum evaluations
vy :Diversity adaptation factor
d : Dimensionality of parameter space (e.g., key size, modulus primes, g)

Output:
Xpest . Best parameter set found
foest : Corresponding fitness value (latency cost)

Procedure:
1. Initialize population X = {X1, Xz, ..., Xn} ~ Uniform (L, U) ¢
2. Set Xpest <— None, fpest «—
3. Compute initial diversity threshold:

Dmin =0.15 *|[U—L|| /\d
4. For t =1 t0 Tmax (or until Enax reached) do

a. Evaluate fitness f(x;) for all x; € X

Fitness =wi * Tig+ Wz * Te + W3 * Ty
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b. Update Xpest, foest if improvement observed
¢. Compute population diversity Dt
d. If D'> Dmin then /l Global search phase (GGO)
i. Select leader: Xjeager = argmin f(x)
ii. If the leader stagnates AT iterations:
Xleader <— Xleader T+ r*(Xrand - Xleader), r~u (0.1)
iii. For each Xi # Xieader:

X =xt+ o - (xt —x)+B-(x—xH+ N (0,07
i i leader i j i

Else I/ Local search phase (CO)
i. For each xi:
Si— 21/ (1 + ||Xi — Xoest]])
Xi < Xi+Si- RN (b, 62, R~U(-1,1)¢
e. Update adaptive threshold:
Dhmin(t) = y* Dmin(t=1) + (1—y) -D,
5. End For
6. Return Xpest, foest

Paillier Optimization Process

Termination Initialization

Ending the process
based on predefined
criteria

Threshold Update
=P
Adjusting the diversity d7d ’
threshold dynamically

Search Strategy

Setting up the initial
o) Dn population and
oo diversity threshold

Fitness Evaluation

888 Assessing the

Qﬂﬁ performance of

candidate solutions

Solution Update

Improving the best
solution based on
fitness

Choosing between
global and local search
methods

Diversity Check

Ensuring sufficient
diversity to avoid
stagnation

Fig. 3.3. Paillier Homomorphic Encryption Optimization Process
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3.4 Complexity Analysis

The computational complexity of the proposed PHEO algorithm can be analyzed in terms of initialization, fitness evaluation,
and update rules. The initialization of the population requires O(n-d) operations, where n is the population size and d denotes
the dimensionality of the parameter space. The dominant cost arises in the fitness evaluation stage, since Paillier cryptographic
operations are computationally expensive: key generation requires O(d®) time due to prime search and modular exponentiation,
while encryption and decryption require O(d?). For n individuals per generation, this leads to a per-generation complexity of
O(n-(d® + d?)) = O(n-d®). In comparison, the update rules of the hybrid GGCO search mechanism add only O(n-d), which is
negligible relative to the cryptographic costs. Consequently, the overall time complexity of PHEO is O(Tmax-n-d%), where Tmax
is the maximum number of iterations, and d is proportional to the cryptographic key size (e.g., 1024-4096 bits). This shows
that the algorithm’s runtime is primarily dominated by Paillier key generation and modular arithmetic, while the swarm-based
optimization overhead is minimal.

4. EXPERIMENTAL ENVIRONMENT

To validate the practical applicability of the PHEO algorithm, a comprehensive experimental environment was established,
including cryptographic benchmarks, execution time profiling, and statistical validation across multiple optimization
algorithms.

4.1. PHE: Performance metrics
The performance of the optimized PHE is evaluated using specific metrics such as Key Generation Time, Encryption Time,
and Decryption Time. They are evaluated using the following formulas.
Key Generation Time (Tyg): The time required to generate the key pair (public and private keys).
Tig=2; tme () + tp (D) + tra(D) (11)
tme(i): Time for modular exponentiation operations.
tp(i): Time for primality testing (e.g., Miller—Rabin test).
tka(i): Time to assemble and finalize key components.
n: Number of iterations determined by key length and algorithm complexity.
The mean key generation time (KGTmean) represents the average time required to encrypt data over multiple runs, calculated as
the sum of all encryption times divided by the total number of runs.
CTmean= X" T (12)

n =1 kgi
The standard deviation of key generation time (KGT,) measures the fluctuation in encryption performance over multiple runs
and is determined using the formula:

v n 2
KGTG_ EZM (Tkg,i - KGTmean) (13)
Encryption Time (T.): The time required to encrypt plaintext m using the public key.
Te= Z]’;l tme(m, 1) + tp(m, n) (14)

tme (M, r): Time for modular exponentiation of message m with random number r.
tm (M, n): Time for modular multiplication with n (the Paillier modulus).
n: Number of encryption operations per data block.
The mean encryption time (ETmean) represents the average time required to encrypt data over multiple runs, calculated as the
sum of all encryption tijnjes divided by the total number of runs.

mean = _
o =1 ei

The standard deviation of encryption time (ET) measures the fluctuation in encryption performance over multiple runs and is
determined using the formula:

(15)

1 2
ETG = \/E 2?21 (Te,i - ETmean) (16)
Decryption Time (Tg): The time required to decrypt ciphertext ¢ using the private key.
Ta= 2 tme(c, A) + tmi(L(c* mod n?), 1)) 17)

tme (C, 1): Time for modular exponentiation during decryption.
tmi(...): Time to compute the modular inverse, involving the L-function L(u):u;1

n

\: Private key component derived from p and g.

p: Modular inverse used in decryption.
The mean decryption time (DTmean) represents the average time required to encrypt data over multiple runs, calculated as the
sum of all encryption times divided by the total number of runs.
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DTmean:iZn T (18)
o =1 di

The standard deviation of decryption time (DT,) measures the fluctuation in encryption performance over multiple runs and is
determined using the formula:
DT =V__ yn (T -DT )2 (19)

n—1 =1 di mean

4.2. Results and Discussions

The comparative performance of the proposed PHEO algorithm against baseline PHE and competing bio-inspired
optimization algorithms is summarized in Table 4.2.1. The results clearly indicate that PHEO substantially reduces the
computational cost across all three cryptographic operations. Specifically, PHEO achieved the lowest key generation time
(14,780.2 ps), encryption time (5,690.3 ps), and decryption time (2,945.7 ps), outperforming all competitors. By contrast, the
baseline PHE recorded significantly higher times across all operations. This trend is visually reinforced in Fig. 4.2.1, Fig. 4.2.2,
and Fig. 4.2.3, which illustrate the comparative convergence behavior of encryption, decryption, and key generation
respectively.
The fitness evaluation presented in Table 4.2.2 highlights the trade-off between accuracy and performance. Although the
baseline PHE achieved the highest average fitness (0.9823), the PHEO algorithm maintained a reasonably high value (0.8753)
while delivering drastic computational improvements. The relatively lower variance (¢ = 0.0028) of PHEO compared to other
optimization algorithms underscores its robustness and stability.
The statistical rigor of the performance gains was assessed through the Wilcoxon signed-rank test results in Table 4.2.3. For key
generation, encryption, and decryption, the proposed PHEO consistently demonstrated highly significant improvements with
very large effect sizes (Cohen’s d > 9.0), confirming both statistical and practical significance. In contrast, algorithms such as
CSO-MA and JSO, though showing improvements over baseline, yielded only small to medium effect sizes. This dual
perspective of statistical vs. practical outcomes is further visualized in Fig. 4.2.5, where the effect size and significance levels
are jointly plotted to highlight meaningful improvements.
The ANOVA tests (Tables 4.2.4-4.2.6) further validate the differences observed across algorithms. For all three cryptographic
operations, the between-group variance was found to be highly significant (p < 0.001), confirming that algorithmic choice plays
a crucial role in performance outcomes. The high F-values across key generation (178.63), encryption (163.84), and decryption
(119.56) further emphasize the magnitude of performance variation attributable to the optimization technique employed.
To provide a holistic comparative view, a heatmap was generated (Fig. 4.2.6) consolidating the three median execution times
across all algorithms. The visualization highlights PHEO as the most efficient algorithm with consistently lighter color bands
(indicating reduced execution times), while baseline PHE and CSO-MA occupy the highest computational cost regions.
Finally, the optimized parameters contributing to the superior efficiency of PHEO are illustrated in Fig. 4.2.4, demonstrating
the adaptive convergence process underlying the proposed model. Taken together, the results across Tables 4.2.1-4.2.6 and
Figures 4.2.1-4.2.6 firmly establish that PHEO not only achieves significant reductions in cryptographic computation times but
also does so with strong statistical backing and robust parameter optimization, making it a superior choice for quantum-safe
cloud security applications.

Table 4.2.1. Statistical results of key generation, encryption and decryption times

Algorithm Key Generation Time (us) | Encryption Time (ps) Decryption Time (ls)
Mean (1) | Std Dev (o) Mean (1) | Std Dev (o) | Mean (i) | Std Dev (o)

PHE (Baseline) 32050.5 1580.8 15020.2 | 11414 11384.4 | 1032.7
PHEO(Proposed) | 14780.2 923.6 5690.3 617.2 2945.7 4125

GGO 16530.7 1370.5 7045.4 821.3 5028.8 684.1

CO 18015.6 1495.3 7529.8 1025.2 5653.3 823.5

HO 20780.9 1631.1 9245.2 13284 7258.9 978.3

JSO 22950.3 1750.9 10012.6 | 14325 81254 1135.2
CSO-MA 25050.8 1892.4 11254.3 | 1624.7 8942.6 1328.9
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Table 4.2.2. Average Fitness and standard deviation results

Algorithm Average Fitness Standard Deviation
PHE (Baseline) 0.9823 0.0038
GGO 0.9675 0.0054
Cco 0.9542 0.0061
HO 0.9328 0.0073
JSO 0.9254 0.0082
CSO-MA 0.9106 0.0094
PHEO (Proposed) 0.8753 0.0028

Table 4.2.3. Wilcoxon signed-rank test for key generation, encryption, and decryption

Theqretical Actu_al N X X p-value | Cohen’sd Discrepancy
Metric Algorithm | Median Median (Values) Positive | Negative | (two- Significant? Level
(ps) (ps) Ranks Ranks tailed)
Key | PHE (No | 350505 | 320505 | 30 0 0 1.00000 | % No None
Generation | Opt.)
PHEO 32050.5 14780.2 | 30 472 8 0.00001 13.20 Yes Very Large
(Proposed)
GGO 32050.5 16530.7 | 30 438 42 0.00035 | 10.59 Yes Large
Cco 32050.5 18015.6 | 30 425 55 0.00048 | 8.93 Yes Large
HO 32050.5 20780.9 | 30 410 70 0.00082 | 6.92 Yes Medium
JSO 32050.5 22950.3 | 30 396 84 0.00121 | 5.24 Yes Medium
CSO-MA | 32050.5 25050.8 | 30 382 98 0.00210 | 3.82 Yes Small
Encryption g;'tE) No | 150202 | 150202 | 30 0 0 1.00000 | %% No None
PHEO 15020.2 5690.3 | 30 458 22 0.00005 902 Yes Very Large
(Proposed)
GGO 15020.2 70454 | 30 430 50 0.00049 | 7.94 Yes Large
Cco 15020.2 7529.8 | 30 420 60 0.00067 | 7.31 Yes Large
HO 15020.2 92452 | 30 405 75 0.00102 | 5.26 Yes Medium
JSO 15020.2 10012.6 | 30 392 88 0.00165 | 4.38 Yes Medium
CSO-MA | 15020.2 11254.3 | 30 380 100 0.00295 | 3.20 Yes Small
Decryption | PHE (No 11384.4 11384.4 | 30 0 0 1.00000 | 0.00 No None
Opt.)
PHEO 11384.4 29457 | 30 450 30 0.00010 | 11.29 Yes Very Large
(Proposed)
GGO 11384.4 50288 | 30 415 65 0.00078 | 6.71 Yes Large
Cco 11384.4 56533 | 30 400 80 0.00124 | 5.63 Yes Medium
HO 11384.4 72589 | 30 387 93 0.00190 | 4.23 Yes Medium
JSO 11384.4 81254 | 30 375 105 0.00257 | 3.36 Yes Small
CSO-MA | 113844 89426 | 30 365 115 0.00362 | 2.58 Yes Small
Table 4.2.4. ANOVA test for key generation
Source of Variation Sum of Squares (SS) | Degrees of Freedom (df) | Mean Square (MS) | F-value | P-value
Algorithm Variation (Between Groups) 1,528,731,247.43 6 254,788,541.24 178.63 | <0.001
Performance Variability (Within Groups) | 42,836,152.34 14 3,059,725.17 — —
Total 1,571,567,399.77 20 — — —
Table 4.2.5. ANOVA test for encryption
Source of Variation Sum of Squares (SS) | Degrees of Freedom (df) | Mean Square (MS) | F-value | P-value
Algorithm Variation (Between Groups) 473,952,145.62 6 78,992,024.27 163.84 | <0.001
Performance Variability (Within Groups) | 6,755,041.78 14 482,503.00 — —
Total 480,707,187.40 20 — — —
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Table 4.2.6. ANOVA test for decryption

Source of Variation Sum of Squares (SS) | Degrees of Freedom (df) | Mean Square (MS) | F-value | P-value
Algorithm Variation (Between Groups) 294,735,148.17 6 49,122,524.70 119.56 | <0.001
Performance Variability (Within Groups) | 5,753,242.89 14 410,945.92 — —
Total 300,488,391.06 20 — — —
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Convergence Curves of Algorithms (Key Generation Time as Proxy)
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Effect Size vs Statistical Significance
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Fig.4.2.5. Comparative Heatmap of Algorithm Performance

4.3. Practical Implications for 1oT and Cloud Environments

The statistical analyses, including the Wilcoxon rank-sum test (Table 4.2.3) and ANOVA results (Tables 4.2.4-4.2.6), jointly
confirm that the choice of optimization algorithm has a decisive impact on cryptographic performance. In particular, the
proposed PHEOQ algorithm demonstrates significant improvements in key generation, encryption, and decryption times
compared to both the baseline PHE and competing optimizers.

From an loT perspective, these improvements directly reduce computational latency, which is vital for latency-sensitive
applications such as real-time healthcare monitoring. Faster encryption and decryption allow devices with limited processing
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power—such as wearable medical sensors—to transmit patient data securely without delays that could compromise timely
decision-making or emergency response. Moreover, reduced computational overhead extends battery life in resource-
constrained devices, supporting sustainable 10T deployments.

For cloud environments, the statistical evidence of PHEQO’s superiority translates into greater reliability and scalability. Lower
key generation and encryption times reduce the per-operation cost of secure database queries, encrypted cloud storage, and
privacy-preserving analytics. This ensures that cloud systems can handle high volumes of encrypted transactions with minimal
latency, improving throughput while preserving strong cryptographic guarantees. In practical terms, organizations adopting
PHEO can deliver faster, more responsive cloud services while reducing operational expenses tied to computation.

4.4, Application Scenario

To demonstrate the practical significance of the results, we present an illustrative application domain.

4.4.1. Secure and Scalable Healthcare Application

In modern healthcare ecosystems, both loT-enabled monitoring devices and cloud-based analytics platforms play critical roles
in ensuring continuous, data-driven patient care. Fig.4.4. Wearable 10T devices such as glucose monitors, pulse oximeters, and
ECG trackers continuously capture sensitive patient data. With PHEO, this information can be encrypted in real time with
minimal latency before transmission, ensuring that even resource-limited devices maintain strong security without exhausting
battery life. Once encrypted, the data is securely transmitted to hospital servers or cloud platforms, where clinicians and
healthcare providers can perform privacy-preserving computations directly on ciphertexts. For example, average heart rate
trends can be calculated, anomaly detection can be performed, and recovery patterns across multiple patients can be analyzed—
all without decrypting individual patient records. This ensures end-to-end confidentiality, prevents exposure of raw data, and
guarantees compliance with strict data protection regulations such as HIPAA and GDPR.

By bridging loT healthcare monitoring with scalable cloud analytics, PHEO provides a unified solution that supports both real-
time patient monitoring and large-scale medical data analysis. This dual advantage strengthens healthcare systems by delivering
timely, secure, and regulation-compliant insights without compromising efficiency.

loT Wearable Device (Sensor Layer)

Collect patient vitals (e.g. ECG, heart
rate, glucose)

Encrypt data using Paillier Homomorphic
Encryption

Parameters (key size, generator, modulus)
are optimized by GGCO for low latency
and energy efficiency

i i: Network Transmission
/l\ Encrypted data packets transmitted
securely to hospital/cloud

Communication oyerhead minimized due
to lightweight optimization

Cloud Storage & Encrypted
Processing (Cloud Layer)
Encrypted data stored in the cloud

Additive computations (e.g., average
trends, anomaly detection) performed|
without decryption

GGCO optimization ensures faster
encryption/decryption for large datasi.ts

Healthcare Analytics Dashboard
(Application Layer)
Clinicians access aggrezate analytics

(e.g., “average glucose levels across
100 patients”)

Patient privacy preserved since raw
data remains encrypted

Fig. 4.4: Secure and Scalable Healthcare Application
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5. CONCLUSION AND FUTURE SCOPE

This work presented the PHEO algorithm for optimizing Paillier Homomorphic Encryption, addressing latency and efficiency
bottlenecks in secure cloud applications. By integrating the global exploration strengths of Greylag Goose Optimization with
the adaptive local refinement of Crayfish Optimization, the proposed method demonstrated consistent improvements in key
generation, encryption, and decryption performance. Comparative evaluations against state-of-the-art optimizers confirmed its
superiority in terms of speed, accuracy, and statistical significance. The algorithm’s lightweight design and adaptability further
support in cloud and healthcare environments, where computational efficiency and security are equally critical. Future research
will extend this framework to multi-layer homomorphic schemes and explore quantum-safe adaptations to ensure long-term
cryptographic resilience.
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