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Abstract 

Bio-inspired optimization methods are potent for addressing high-dimensional and complex design spaces. The research 

proposes a Paillier Homomorphic Encryption Optimization (PHEO) algorithm using the Hybrid Adaptive Greylag Goose– 

Crayfish Optimization (A-GGCO), designed to enhance Paillier Homomorphic Encryption (PHE) parameters for secure and 

scalable cloud applications. The algorithm incorporates a diversity-driven switching mechanism to balance global exploration 

and local exploitation, drawing on the migratory behavior of geese and the adaptive movements of crayfish. An experimental 

evaluation was conducted on leading optimizers, including PHE (baseline), GGO, CO, HO, JSO, and CSO-MA. Results 

demonstrate that PHEO achieves faster convergence, higher accuracy, and robustness, supported by statistical validation 

(Wilcoxon test, ANOVA, and effect-size analysis) and confirmed significant reductions in key generation, encryption, and 

decryption times, with practical benefits for IoT healthcare and latency-sensitive cloud environments. 

 

Keywords: Hybrid Optimization, Greylag Goose Optimization, Crayfish Optimization, Nature-Inspired Algorithms, Global– 

Local Search 

 

1. INTRODUCTION 

The growing dependence on digital ecosystems such as cloud computing has amplified the need for cryptographic solutions 

that balance security, efficiency, and scalability. Sensitive domains—including healthcare, finance, and smart infrastructures— 

demand encryption schemes capable of safeguarding confidential data while supporting real-time responsiveness [1–3]. 

Classical public-key systems such as RSA and Elliptic Curve Cryptography (ECC) offer strong security guarantees but cannot 

perform computations on encrypted data [4]. This limitation hinders their applicability in privacy-preserving scenarios such as 

secure analytics or federated learning. Fully Homomorphic Encryption (FHE) addresses this gap by enabling arbitrary 

computations over ciphertexts, but its extremely high computational cost makes it impractical for latency-sensitive or resource- 

constrained environments [5,6]. 

As a more feasible alternative, Paillier Homomorphic Encryption (PHE) supports additive homomorphism with considerably 

lower complexity than FHE, making it attractive for use cases such as secure data aggregation, encrypted cloud analytics, and 

decentralized identity verification [7,8]. However, the reliance on large-number arithmetic in PHE—particularly during key 

generation, encryption, and decryption—introduces computational overhead and latency bottlenecks, restricting its applicability 

in large-scale or real-time deployments [9,10]. 

To overcome these bottlenecks, this research proposes a hybrid optimization framework that integrates Greylag Goose 

Optimization (GGO) [11] and Crayfish Optimization (CO) [12] to adaptively tune PHE parameters, thereby reducing latency 

without compromising cryptographic strength. 

PHE is a widely used probabilistic asymmetric cryptographic scheme that supports additive homomorphism, making it crucial 

in secure data processing tasks such as privacy-preserving computation and secure multi-party learning [7,8,13]. The primary 

challenge in implementing PHE lies in selecting optimal cryptographic parameters—particularly the key size, generator, and 

modulus structure—to balance security strength, computational efficiency, and encryption and decryption accuracy [9,10]. 

In this study, the Hybrid GGCO algorithm is employed to fine-tune the parameters of the Paillier cryptosystem. The optimization 

objective is defined as minimizing computational latency (encryption and decryption time) while maximizing ciphertext 

integrity and preserving the homomorphic property under modular arithmetic [11,12,14]. The algorithm operates over a 

constrained multi-objective formulation that includes security constraints such as minimum bit-length thresholds and co-prime 

conditions between the modulus and generator. 

1.1. Paillier Homomorphic Encryption: The Paillier cryptosystem relies on modular arithmetic and the composite residuosity 

class problem. It operates in three stages: (1) key generation, (2) encryption, (3) decryption. [7] 

i. Key Generation 

 Select two large prime numbers p and q.

 Compute n = p ⋅ q and λ = lcm (p−1, q−1).

 Choose a random integer g such that g∈𝑍∗2 and assure 𝑔𝜆 mod n2 permits computing the decryption function.
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𝑛 

 Compute μ = (L (gλ mod n2)) −1mod n, where L(x) = 𝑥−1
𝑛 

 The public key is (n, g) and the private key is (λ, μ). [7,10]

 

ii. Encryption 

Given a plaintext m∈Zn, choose a random integer r∈𝑍∗ , and compute the ciphertext C as: 

C = gm ⋅ rn mod n2 

This ensures that encrypting the same message multiple times results in different ciphertexts which shows encryption is 

probabilistic.[7] 

 

iii. Decryption 

Given a ciphertext C, recover the plaintext m using the private key: 

m = L (Cλ mod n2) ⋅ μ mod n. [7] 

 

iv. Homomorphic Property 

Paillier encryption supports additive homomorphism, meaning the product of two ciphertexts results in the encryption of the 

sum of their plaintexts: [7,15] 
C1 = E(m1) = gm ⋅ 𝑟𝑛 mod n2 

1  1 C2 = E(m2) = gm ⋅ 𝑟𝑛 mod n2 
2 2 

Multiplying the ciphertexts: 
C′ = C1⋅C2 = g (m + m ) ⋅ (r1 ⋅ r2)

n mod n2 
1 2 

Thus, 

D (C′ ) = m1 + m2 mod n 

This property enables secure computations on encrypted data without decryption, making PHE valuable for secure aggregation 

and privacy-preserving analytics [9]. 

1.2 Greylag Goose Optimization (GGO) 

Greylag Goose Optimization (GGO) is a swarm-based metaheuristic inspired by the migratory behavior of greylag geese [11]. 

In nature, geese migrate in V-shaped formations, which reduces air resistance, enhances communication, and conserves energy. 

Algorithmically, GGO models this cooperative structure by designating the best-performing candidate solution as the leader. 

Leadership is dynamically reassigned to prevent stagnation, ensuring diversity and sustained global exploration. This 

mechanism makes GGO effective for exploring broad search spaces [11,16]. 

1.3 Crayfish Optimization (CO) 

The Crayfish Optimization (CO) algorithm is motivated by the adaptive foraging and defensive behaviors of crayfish [12]. 

Crayfish exhibit variable step-size movements: large exploratory steps when far from food and small, precise refinements when 

close. In optimization, this translates into an adaptive local search that balances exploration and exploitation. CO is highly 

effective for local refinement and convergence acceleration but may risk entrapment in local optima when used alone [12,17]. 

1.4 Motivation for Hybridization 

Individually, GGO and CO offer distinct advantages but suffer complementary limitations. GGO excels in global exploration 

but lacks precision in fine-grained exploitation, while CO provides strong local refinement but struggles to escape local minima. 

By hybridizing GGO with CO (A-GGCO), a synergistic balance is achieved between exploration and exploitation [16,12,17]. 

This hybrid design directly addresses the latency challenges in Paillier Homomorphic Encryption by enabling more efficient 

parameter optimization across key generation, encryption, and decryption [9]. 

2. RELATED WORK 

Recent years have seen increasing interest in optimization-driven cryptography, where swarm intelligence and evolutionary 

computation are leveraged to improve cryptographic efficiency. Studies have explored methods such as particle swarm 

optimization (PSO) and differential evolution (DE) to optimize cipher parameters, while genetic algorithms (GA) have been 

applied for adaptive key scheduling in symmetric encryption [14,17]. Within the domain of homomorphic encryption (HE), 

prior research has primarily focused on algorithmic improvements and hardware acceleration. For instance, Paillier’s scheme 

[7,15] and Gentry’s fully homomorphic encryption (FHE) framework [5] have been enhanced through GPU acceleration [9], 

bootstrapping improvements [6], approximate arithmetic, and optimized modular arithmetic for cloud computing [8,13]. 

Standardization efforts also highlight the increasing maturity of HE systems [10]. While these advances significantly improve 

performance, many require specialized hardware or involve trade-offs that may reduce general applicability. 

From the perspective of metaheuristic hybridization, a growing body of research emphasizes the benefits of combining 

complementary search strategies. Hybrid algorithms such as GWO–SSA (Grey Wolf Optimizer with Salp Swarm Algorithm), 
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HHO–DE (Harris Hawks Optimization with Differential Evolution), and PSO–GA hybrids have consistently outperformed their 

standalone counterparts in fields like engineering optimization, scheduling, and cloud resource allocation [16,14,17]. Recently, 

novel bio-inspired algorithms such as Greylag Goose Optimization (GGO) [11] and the Crayfish Optimization Algorithm (CO) 

[12] have shown strong potential across complex optimization landscapes. However, despite these successes, the application of 

hybrid metaheuristics in cryptographic parameter optimization—particularly for Paillier homomorphic encryption (PHE) 

[7,15]—remains relatively underexplored, with only a limited number of works targeting heuristic optimization for PHE 

parameter tuning [13]. 

Thus, while swarm intelligence and hybrid metaheuristics have achieved remarkable success in other computational domains, 

their integration with homomorphic encryption and cryptographic parameter optimization represents a promising yet 

insufficiently investigated research frontier. 

To better contextualize the existing research, Table 2.1 summarizes key contributions in homomorphic encryption schemes and 

optimization-driven approaches. Notably, only a few works directly address Paillier parameter optimization [Yang et al., 2021], 

underscoring the need for hybrid, general-purpose, and cryptography-tailored metaheuristics. 

 

Table 2.1. Summary of related works on homomorphic encryption and optimization 

Reference (Author, 

Journal/Year) 
Method Advantages Limitation 

 

Gentry, Communications of 

the ACM, 2009 

 

Fully Homomorphic 

Encryption (FHE) 

First complete scheme 

supporting arbitrary 

computations on ciphertexts 

Extremely high 

computational overhead, 

impractical for real-time or 

IoT applications 

 

Paillier, EUROCRYPT, 1999 

 

Paillier Homomorphic 

Encryption (PHE) 

Supports additive 

homomorphism, practical for 

secure aggregation and cloud 

storage 

Modular exponentiation is 

expensive; encryption and 

decryption are high 

Montgomery, Mathematics of 

Computation, 1985; Barrett, 

IEEE Trans. Computers, 

1986 

Fast modular 

exponentiation & 

reduction 

 

Improves the efficiency of 

modular arithmetic operations 

Limited impact for large- 

scale homomorphic 

schemes 

 

Wang et al., Springer, 2018 
GPU-based acceleration 

of PHE 

High parallelism reduces 

encryption/decryption latency 

Hardware dependency 

lacks general-purpose 

applicability 

 

Li et al., IEEE Access, 2020 
FPGA-assisted PHE 

implementation 

Faster modular arithmetic with 

energy efficiency 

Requires specialized 

hardware, limited 

portability 

Storn & Price, J. Global 

Optimization, 1997 

Differential Evolution 

(DE) for cryptographic 

optimization 

Strong global search capability, 

effective in parameter tuning 

Prone to premature 

convergence in complex 

landscapes 

 

Mirjalili et al., Advances in 

Engineering Software, 2014 

Grey Wolf Optimizer 

(GWO) for 

cryptographic parameter 

selection 

 

Balanced exploration and 

exploitation 

May stagnate in local 

minima; performance 

depends on parameter 

tuning 

Zhang et al., Applied Soft 

Computing, 2019 

Hybrid GWO–SSA 

(Salp Swarm Algorithm) 

Improved convergence speed 

and solution quality 

Algorithmic complexity 

increases; not tailored to 

homomorphic encryption 

Yang et al., Information 

Sciences, 2021 

Heuristic optimization 

for Paillier parameter 

tuning 

Reduction in key generation and 

encryption latency 

Evaluation limited to 

single-objective 

optimization 

 

2.1. Research Gap 

Despite progress in both homomorphic encryption and metaheuristic hybridization, several key gaps remain: 

1. Limited Cryptography-Focused Hybrids: Most hybrid metaheuristics target classical optimization problems, with 

minimal exploration of cryptographic parameter optimization. 

2. PHE-Specific Optimization: Existing cryptographic optimization studies rarely address Paillier Homomorphic 

Encryption, despite its practical trade-off between security and efficiency. 

3. Latency-Aware Evaluation: Few works benchmark optimization in terms of end-to-end cryptographic latency (key 

generation, encryption, decryption) under realistic workloads. 
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4. Statistical Validation: Performance improvements are often reported without rigorous statistical testing, leaving 

uncertainty about reproducibility and generalizability. 

 

2.2. Contributions 

To bridge these gaps, this work makes the following contributions: 

1. PHEO Framework: A novel optimization algorithm that integrates GGO’s global search capability with CO’s adaptive 

local refinement, tailored for optimizing PHE parameters. 

2. Cryptographic Benchmarking: A latency-aware benchmarking for evaluating key generation, encryption, and 

decryption times under varying PHE configurations, ensuring both efficiency and correctness. 

3. Rigorous Statistical Analysis: Use of the Wilcoxon rank-sum test and ANOVA to confirm the significance and 

robustness of improvements achieved by PHEO over baseline approaches. 

4. Real-World Relevance: Demonstration of applicability in healthcare, ensuring compliance with privacy regulations 

(HIPAA, GDPR). 

By integrating adaptive hybrid optimization with Paillier homomorphic encryption, this research advances a secure, efficient, 

and scalable cryptographic framework suited for next-generation cloud ecosystems. 

 

3. METHODOLOGY: PHE OPTIMIZATION USING HYBRID A-GGCO 

This section details the proposed methodology for optimizing Paillier Homomorphic Encryption (PHE) parameters using the 

Adaptive Greylag Goose–Crayfish Optimization (A-GGCO) algorithm, steps shown in Fig.3.2. The objective is to minimize 

cryptographic latency (in key generation, encryption, and decryption) while ensuring robustness and security compliance. The 

hybridization combines global exploration from Greylag Goose Optimization (GGO) with local refinement from Crayfish 

Optimization (CO), adaptively switching between phases according to population diversity. 

3.1 Problem Formulation 

The optimization problem is defined over the PHE parameter space: 

 Key size (k), typically in bits (e.g., 512–4096), 

 Modulus primes (p, q), whose selection influences both security strength and computation time, 

 Generator parameter (g), which impacts encryption speed and randomness. 

The goal is to minimize the cryptographic cost function: 

f(x) = w1Tkg(x) + w2Te(x) + w3Td(x) (1) 

where Tkg, Te, and Td denote average execution times for key generation, encryption, and decryption, respectively, under 

candidate parameter configuration x. The weights w1, w2, and w3 allow prioritization according to deployment needs (e.g., key 

generation is critical in session-based systems, while decryption is critical in cloud query processing). 

3.2 Adaptive Hybridization Strategy 

To balance exploration (searching widely for efficient cryptographic parameters) and exploitation (fine-tuning around promising 

configurations), A-GGCO uses a dynamic diversity threshold. 

A population of n candidate parameter sets is initialized uniformly at random within security-admissible bounds: 

X = {x1, x2, ..., xn} ∈ Uniform (L, U) d (2) 

where [L, U] denotes valid ranges (e.g., 512–4096 bits for key size), and d is the dimensionality of the parameter space. 

The minimum diversity threshold is defined as: 

Dmin = 0.15⋅∥U−L∥ /√𝑑 (3) 

Diversity at iteration t is measured as the average deviation of candidates from the population mean: 
Dt = 

1 
∑n ||xt − x

t
|| , where x

t 
= 

1 
∑𝑛 𝑥𝑡 (4) 

n  i=1 i 𝑛  𝑖=1  𝑖 

This metric determines whether the algorithm enters the global exploration phase (GGO) or local exploitation phase (CO). 

Global Exploration Phase (GGO) 

When Dt > Dmin, the population is sufficiently diverse, and global search dominates. The best cryptographic configuration acts 

as the flock leader: 

xleader ← argmin f(xi) (5) 

If the leader stagnates for ΔT iterations, it is perturbed to reintroduce diversity: 
𝑥𝑡+1 = 𝑥𝑡 + r . ( 𝑥𝑡 - 𝑥𝑡 ), where r ∈ Uniform (0,1) (6) 

𝑙𝑒𝑎𝑑𝑒𝑟 𝑙𝑒𝑎𝑑𝑒𝑟 𝑟𝑎𝑛𝑑 𝑙𝑒𝑎𝑑𝑒𝑟 

Other candidates update positions via formation dynamics: 
xt+1 = xt + α ⋅ (xt − xt) + β ⋅ (xt − xt) + 𝓝 (θ, σ²), (7) 

i i leader i j i 

where α, β are weights of leader attraction and neighbor interaction, while Gaussian noise prevents premature convergence. 

Local Exploitation Phase (CO) 

When Dt ≤ Dmin , the population converges, and fine-tuning is applied through crayfish-inspired movement. The adaptive step 

size is: 

Si ← 1 / (1 + ||xi − xbest||) (8) 
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Candidates update their parameters as: 

xi ← xi + Si ⋅ R ⋅ 𝓝 (μ, σ²), R∼U(−1,1)d (9) 

This ensures smaller refinements for candidates near the best cryptographic solution and larger exploratory steps for those 

farther away. 

Adaptive Diversity Update 

To avoid bias toward either phase, the diversity threshold evolves: 

Dmin(t) = γ⋅ Dmin(t−1) + (1−γ) ⋅Dt , (10) 

where γ ∈ [0,1] controls smoothing. This mechanism adaptively balances exploration and exploitation across generations. 

Stopping Criteria and Output 

The process repeats until a stopping criterion is met: either a maximum iteration limit (Tmax) or evaluation budget (Emax). The 

output is the optimal PHE parameter set xbest that minimizes execution cost while meeting security constraints (e.g., key size ≥ 

2048 bits) along with its fitness value fbest. 

 

Fig. 3.2. PHE Optimization Process 

3.3 Algorithm Steps 

The operational workflow is summarized in Algorithm: PHEO and visually represented in Fig. 3.3: 

1. Initialization: Generate population and set initial diversity threshold Dmin. 

2. Evaluation: Assess fitness and track the global best solution. 

3. Diversity Check: Calculate Dt . 

o If Dt >Dmin : perform GGO-based global exploration. 

o Else: perform CO-based local exploitation. 

4. Leader Switching & Adaptation: If no progress is observed, perturb leaders (GGO) or adapt step sizes (CO). 

5. Threshold Update: Adjust Dmin dynamically based on progress. 

6. Termination: Stop when iteration or evaluation limits are reached, and return the best solution. 

Algorithm PHEO: Paillier Homomorphic Encryption Optimization 

Input: 

n : Population size 

[L, U] : Lower and upper bounds of parameter space 

Tmax  : Maximum iterations 

Emax : Maximum evaluations 

γ : Diversity adaptation factor 

d : Dimensionality of parameter space (e.g., key size, modulus primes, g) 

 

Output: 

xbest  : Best parameter set found 

fbest  : Corresponding fitness value (latency cost) 

 

Procedure: 

1. Initialize population X = {x1, x2, …, xn} ~ Uniform (L, U) d 

2. Set xbest ← None, fbest ← ∞ 

3. Compute initial diversity threshold: 

Dmin = 0.15 * ||U − L|| / √d 
4. For t = 1 to Tmax (or until Emax reached) do 

a. Evaluate fitness f(xi) for all xi ∈ X 

Fitness = w1 * Tkg + w2 * Te + w3 * Td 
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b. Update xbest, fbest if improvement observed 

c. Compute population diversity Dt 

d. If Dt > Dmin then // Global search phase (GGO) 

i. Select leader: xleader = argmin f(xi) 

ii. If the leader stagnates ΔT iterations: 

xleader ← xleader + r*(xrand − xleader), r ~ U (0,1) 

iii. For each xi ≠ xleader: 
xt+1 = xt + α ⋅ (xt − xt) + β ⋅ (xt − xt) + 𝓝 (θ, σ²) 

i i leader i j i 

Else // Local search phase (CO) 

i. For each xi: 

Si ← 1 / (1 + ||xi − xbest||) 

xi ← xi + Si ⋅ R ⋅ 𝓝 (μ, σ²), R∼U(−1,1)d 

e. Update adaptive threshold: 

Dmin(t) = γ⋅ Dmin(t−1) + (1−γ) ⋅Dt , 

5. End For 

6. Return xbest, fbest 

 

 

 

 

 

 

Fig. 3.3. Paillier Homomorphic Encryption Optimization Process 
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𝑖=1 

3.4 Complexity Analysis 

The computational complexity of the proposed PHEO algorithm can be analyzed in terms of initialization, fitness evaluation, 

and update rules. The initialization of the population requires O(n⋅d) operations, where n is the population size and d denotes 

the dimensionality of the parameter space. The dominant cost arises in the fitness evaluation stage, since Paillier cryptographic 

operations are computationally expensive: key generation requires O(d3) time due to prime search and modular exponentiation, 

while encryption and decryption require O(d2). For n individuals per generation, this leads to a per-generation complexity of 

O(n⋅(d3 + d2)) ≈ O(n⋅d3). In comparison, the update rules of the hybrid GGCO search mechanism add only O(n⋅d), which is 

negligible relative to the cryptographic costs. Consequently, the overall time complexity of PHEO is O(Tmax⋅n⋅d3), where Tmax 

is the maximum number of iterations, and d is proportional to the cryptographic key size (e.g., 1024–4096 bits). This shows 

that the algorithm’s runtime is primarily dominated by Paillier key generation and modular arithmetic, while the swarm-based 

optimization overhead is minimal. 

 

4. EXPERIMENTAL ENVIRONMENT 

To validate the practical applicability of the PHEO algorithm, a comprehensive experimental environment was established, 

including cryptographic benchmarks, execution time profiling, and statistical validation across multiple optimization 

algorithms. 

4.1. PHE: Performance metrics 

The performance of the optimized PHE is evaluated using specific metrics such as Key Generation Time, Encryption Time, 

and Decryption Time. They are evaluated using the following formulas. 

Key Generation Time (Tₖg): The time required to generate the key pair (public and private keys). 

Tkg = ∑𝑛  𝑡𝑚𝑒 (𝑖) + 𝑡𝑝 (𝑖) + 𝑡𝑘𝑎(𝑖) (11) 

tme(i): Time for modular exponentiation operations. 

tp(i): Time for primality testing (e.g., Miller–Rabin test). 

tka(i): Time to assemble and finalize key components. 

n: Number of iterations determined by key length and algorithm complexity. 

The mean key generation time (KGTmean) represents the average time required to encrypt data over multiple runs, calculated as 

the sum of all encryption times divided by the total number of runs. 
KGTmean = 

1 
∑𝑛  𝑇 (12) 

𝑛  𝑖=1 𝑘𝑔,𝑖 

The standard deviation of key generation time (KGTσ) measures the fluctuation in encryption performance over multiple runs 

and is determined using the formula: 

KGTσ 
= √ 

1 

𝑛−1 

𝑛 
𝑖=1 (𝑇𝑘𝑔,𝑖 

2 

− 𝐾𝐺𝑇𝑚𝑒𝑎𝑛 ) (13) 

Encryption Time (Tₑ): The time required to encrypt plaintext m using the public key. 
𝑛 
𝑗=1 𝑡𝑚𝑒 (𝑚, 𝑟) + 𝑡𝑚(𝑚, 𝑛) (14) 

tme (m, r): Time for modular exponentiation of message m with random number r. 

tm (m, n): Time for modular multiplication with n (the Paillier modulus). 

n: Number of encryption operations per data block. 

The mean encryption time (ETmean) represents the average time required to encrypt data over multiple runs, calculated as the 

sum of all encryption times divided by the total number of runs. 
ETmean = 

1 
∑𝑛  𝑇 (15) 

𝑛  𝑖=1 𝑒,𝑖 

The standard deviation of encryption time (ETσ) measures the fluctuation in encryption performance over multiple runs and is 

determined using the formula: 

ETσ 
= √ 

1 

𝑛−1 

𝑛 
𝑖=1 (𝑇𝑒,𝑖 

2 
− 𝐸𝑇𝑚𝑒𝑎𝑛 ) (16) 

Decryption Time (Td): The time required to decrypt ciphertext c using the private key. 
𝑛 
𝑘=1 𝑡𝑚𝑒 (𝑐, 𝜆) + 𝑡𝑚𝑖 (𝐿(𝑐𝜆 𝑚𝑜𝑑 𝑛2), µ)) (17) 

tme (c, λ): Time for modular exponentiation during decryption. 

tmi(...): Time to compute the modular inverse, involving the L-function L(u)=
𝑢−1 

. 
𝑛 

λ: Private key component derived from p and q. 

μ: Modular inverse used in decryption. 

The mean decryption time (DTmean) represents the average time required to encrypt data over multiple runs, calculated as the 

sum of all encryption times divided by the total number of runs. 

∑ 

Te = ∑ 

∑ 

Td = ∑ 
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DTmean = 
1 

∑𝑛  𝑇 
 

(18) 
𝑛  𝑖=1  𝑑,𝑖 

The standard deviation of decryption time (DTσ) measures the fluctuation in encryption performance over multiple runs and is 

determined using the formula: 

DT = √ 
1 

∑𝑛 (𝑇 2 − 𝐷𝑇 ) (19) 
σ 

𝑛−1 𝑖=1 𝑑,𝑖 𝑚𝑒𝑎𝑛 

 

 
4.2. Results and Discussions 

The comparative performance of the proposed PHEO algorithm against baseline PHE and competing bio-inspired 

optimization algorithms is summarized in Table 4.2.1. The results clearly indicate that PHEO substantially reduces the 

computational cost across all three cryptographic operations. Specifically, PHEO achieved the lowest key generation time 

(14,780.2 µs), encryption time (5,690.3 µs), and decryption time (2,945.7 µs), outperforming all competitors. By contrast, the 

baseline PHE recorded significantly higher times across all operations. This trend is visually reinforced in Fig. 4.2.1, Fig. 4.2.2, 

and Fig. 4.2.3, which illustrate the comparative convergence behavior of encryption, decryption, and key generation 

respectively. 

The fitness evaluation presented in Table 4.2.2 highlights the trade-off between accuracy and performance. Although the 

baseline PHE achieved the highest average fitness (0.9823), the PHEO algorithm maintained a reasonably high value (0.8753) 

while delivering drastic computational improvements. The relatively lower variance (σ = 0.0028) of PHEO compared to other 

optimization algorithms underscores its robustness and stability. 

The statistical rigor of the performance gains was assessed through the Wilcoxon signed-rank test results in Table 4.2.3. For key 

generation, encryption, and decryption, the proposed PHEO consistently demonstrated highly significant improvements with 

very large effect sizes (Cohen’s d > 9.0), confirming both statistical and practical significance. In contrast, algorithms such as 

CSO-MA and JSO, though showing improvements over baseline, yielded only small to medium effect sizes. This dual 

perspective of statistical vs. practical outcomes is further visualized in Fig. 4.2.5, where the effect size and significance levels 

are jointly plotted to highlight meaningful improvements. 

The ANOVA tests (Tables 4.2.4–4.2.6) further validate the differences observed across algorithms. For all three cryptographic 

operations, the between-group variance was found to be highly significant (p < 0.001), confirming that algorithmic choice plays 

a crucial role in performance outcomes. The high F-values across key generation (178.63), encryption (163.84), and decryption 

(119.56) further emphasize the magnitude of performance variation attributable to the optimization technique employed. 

To provide a holistic comparative view, a heatmap was generated (Fig. 4.2.6) consolidating the three median execution times 

across all algorithms. The visualization highlights PHEO as the most efficient algorithm with consistently lighter color bands 

(indicating reduced execution times), while baseline PHE and CSO-MA occupy the highest computational cost regions. 

Finally, the optimized parameters contributing to the superior efficiency of PHEO are illustrated in Fig. 4.2.4, demonstrating 

the adaptive convergence process underlying the proposed model. Taken together, the results across Tables 4.2.1–4.2.6 and 

Figures 4.2.1–4.2.6 firmly establish that PHEO not only achieves significant reductions in cryptographic computation times but 

also does so with strong statistical backing and robust parameter optimization, making it a superior choice for quantum-safe 

cloud security applications. 

 

 

 

Table 4.2.1. Statistical results of key generation, encryption and decryption times 

Algorithm Key Generation Time (µs) Encryption Time (µs) Decryption Time (µs) 
 Mean (µ) Std Dev (σ) Mean (µ) Std Dev (σ) Mean (µ) Std Dev (σ) 

PHE (Baseline) 32050.5 1580.8 15020.2 1141.4 11384.4 1032.7 

PHEO(Proposed) 14780.2 923.6 5690.3 617.2 2945.7 412.5 

GGO 16530.7 1370.5 7045.4 821.3 5028.8 684.1 

CO 18015.6 1495.3 7529.8 1025.2 5653.3 823.5 

HO 20780.9 1631.1 9245.2 1328.4 7258.9 978.3 

JSO 22950.3 1750.9 10012.6 1432.5 8125.4 1135.2 

CSO-MA 25050.8 1892.4 11254.3 1624.7 8942.6 1328.9 
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Table 4.2.2. Average Fitness and standard deviation results 
 

Algorithm Average Fitness Standard Deviation 

PHE (Baseline) 0.9823 0.0038 

GGO 0.9675 0.0054 

CO 0.9542 0.0061 

HO 0.9328 0.0073 

JSO 0.9254 0.0082 

CSO-MA 0.9106 0.0094 

PHEO (Proposed) 0.8753 0.0028 

 

Table 4.2.3. Wilcoxon signed-rank test for key generation, encryption, and decryption 

 

Metric 

 

Algorithm 

Theoretical 

Median 

(µs) 

Actual 

Median 

(µs) 

N 

(Values) 

Σ 

Positive 

Ranks 

Σ 

Negative 

Ranks 

p-value 

(two- 

tailed) 

Cohen’s d  

Significant? 
Discrepancy 

Level 

Key 

Generation 

PHE  (No 

Opt.) 
32050.5 32050.5 30 0 0 1.00000 

0.00 
No None 

 PHEO 

(Proposed) 
32050.5 14780.2 30 472 8 0.00001 

13.20 
Yes Very Large 

 GGO 32050.5 16530.7 30 438 42 0.00035 10.59 Yes Large 

 CO 32050.5 18015.6 30 425 55 0.00048 8.93 Yes Large 
 HO 32050.5 20780.9 30 410 70 0.00082 6.92 Yes Medium 

 JSO 32050.5 22950.3 30 396 84 0.00121 5.24 Yes Medium 

 CSO-MA 32050.5 25050.8 30 382 98 0.00210 3.82 Yes Small 

Encryption 
PHE  (No 

Opt.) 
15020.2 15020.2 30 0 0 1.00000 

0.00 
No None 

 PHEO 

(Proposed) 
15020.2 5690.3 30 458 22 0.00005 

9.02 
Yes Very Large 

 GGO 15020.2 7045.4 30 430 50 0.00049 7.94 Yes Large 

 CO 15020.2 7529.8 30 420 60 0.00067 7.31 Yes Large 

 HO 15020.2 9245.2 30 405 75 0.00102 5.26 Yes Medium 
 JSO 15020.2 10012.6 30 392 88 0.00165 4.38 Yes Medium 

 CSO-MA 15020.2 11254.3 30 380 100 0.00295 3.20 Yes Small 

Decryption PHE (No 

Opt.) 

11384.4 11384.4 30 0 0 1.00000 0.00 No None 

 PHEO 

(Proposed) 

11384.4 2945.7 30 450 30 0.00010 11.29 Yes Very Large 

 GGO 11384.4 5028.8 30 415 65 0.00078 6.71 Yes Large 

 CO 11384.4 5653.3 30 400 80 0.00124 5.63 Yes Medium 
 HO 11384.4 7258.9 30 387 93 0.00190 4.23 Yes Medium 

 JSO 11384.4 8125.4 30 375 105 0.00257 3.36 Yes Small 
 CSO-MA 11384.4 8942.6 30 365 115 0.00362 2.58 Yes Small 

 

 

 

Table 4.2.4. ANOVA test for key generation 

Source of Variation Sum of Squares (SS) Degrees of Freedom (df) Mean Square (MS) F-value P-value 

Algorithm Variation (Between Groups) 1,528,731,247.43 6 254,788,541.24 178.63 < 0.001 

Performance Variability (Within Groups) 42,836,152.34 14 3,059,725.17 — — 

Total 1,571,567,399.77 20 — — — 

 

 

 

Table 4.2.5. ANOVA test for encryption 

Source of Variation Sum of Squares (SS) Degrees of Freedom (df) Mean Square (MS) F-value P-value 

Algorithm Variation (Between Groups) 473,952,145.62 6 78,992,024.27 163.84 < 0.001 

Performance Variability (Within Groups) 6,755,041.78 14 482,503.00 — — 

Total 480,707,187.40 20 — — — 
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Table 4.2.6. ANOVA test for decryption 

Source of Variation Sum of Squares (SS) Degrees of Freedom (df) Mean Square (MS) F-value P-value 

Algorithm Variation (Between Groups) 294,735,148.17 6 49,122,524.70 119.56 < 0.001 

Performance Variability (Within Groups) 5,753,242.89 14 410,945.92 — — 

Total 300,488,391.06 20 — — — 

 

 

 

 

 

 

Fig. 4.2.1. Performance of Encryption Time 

 

 

 

 

 

 

 

Fig. 4.2.2. Performance of Decryption Time 
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Fig.4.2.3. Performance of Key Generation Time 

 

 

 

 

 

 

 

 

 

Fig. 4.2.4. Performance of PHEO Parameters 
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Fig. 4.2.5. Statistical vs. Practical significance 

 

 

 

 

Fig.4.2.5. Comparative Heatmap of Algorithm Performance 

 

 

4.3. Practical Implications for IoT and Cloud Environments 

The statistical analyses, including the Wilcoxon rank-sum test (Table 4.2.3) and ANOVA results (Tables 4.2.4–4.2.6), jointly 

confirm that the choice of optimization algorithm has a decisive impact on cryptographic performance. In particular, the 

proposed PHEO algorithm demonstrates significant improvements in key generation, encryption, and decryption times 

compared to both the baseline PHE and competing optimizers. 

From an IoT perspective, these improvements directly reduce computational latency, which is vital for latency-sensitive 

applications such as real-time healthcare monitoring. Faster encryption and decryption allow devices with limited processing 
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power—such as wearable medical sensors—to transmit patient data securely without delays that could compromise timely 

decision-making or emergency response. Moreover, reduced computational overhead extends battery life in resource- 

constrained devices, supporting sustainable IoT deployments. 

For cloud environments, the statistical evidence of PHEO’s superiority translates into greater reliability and scalability. Lower 

key generation and encryption times reduce the per-operation cost of secure database queries, encrypted cloud storage, and 

privacy-preserving analytics. This ensures that cloud systems can handle high volumes of encrypted transactions with minimal 

latency, improving throughput while preserving strong cryptographic guarantees. In practical terms, organizations adopting 

PHEO can deliver faster, more responsive cloud services while reducing operational expenses tied to computation. 

 

4.4. Application Scenario 

To demonstrate the practical significance of the results, we present an illustrative application domain. 

4.4.1. Secure and Scalable Healthcare Application 

In modern healthcare ecosystems, both IoT-enabled monitoring devices and cloud-based analytics platforms play critical roles 

in ensuring continuous, data-driven patient care. Fig.4.4. Wearable IoT devices such as glucose monitors, pulse oximeters, and 

ECG trackers continuously capture sensitive patient data. With PHEO, this information can be encrypted in real time with 

minimal latency before transmission, ensuring that even resource-limited devices maintain strong security without exhausting 

battery life. Once encrypted, the data is securely transmitted to hospital servers or cloud platforms, where clinicians and 

healthcare providers can perform privacy-preserving computations directly on ciphertexts. For example, average heart rate 

trends can be calculated, anomaly detection can be performed, and recovery patterns across multiple patients can be analyzed— 

all without decrypting individual patient records. This ensures end-to-end confidentiality, prevents exposure of raw data, and 

guarantees compliance with strict data protection regulations such as HIPAA and GDPR. 

By bridging IoT healthcare monitoring with scalable cloud analytics, PHEO provides a unified solution that supports both real- 

time patient monitoring and large-scale medical data analysis. This dual advantage strengthens healthcare systems by delivering 

timely, secure, and regulation-compliant insights without compromising efficiency. 
 

Fig. 4.4: Secure and Scalable Healthcare Application 
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5. CONCLUSION AND FUTURE SCOPE 

This work presented the PHEO algorithm for optimizing Paillier Homomorphic Encryption, addressing latency and efficiency 

bottlenecks in secure cloud applications. By integrating the global exploration strengths of Greylag Goose Optimization with 

the adaptive local refinement of Crayfish Optimization, the proposed method demonstrated consistent improvements in key 

generation, encryption, and decryption performance. Comparative evaluations against state-of-the-art optimizers confirmed its 

superiority in terms of speed, accuracy, and statistical significance. The algorithm’s lightweight design and adaptability further 

support in cloud and healthcare environments, where computational efficiency and security are equally critical. Future research 

will extend this framework to multi-layer homomorphic schemes and explore quantum-safe adaptations to ensure long-term 

cryptographic resilience. 
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