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Abstract: This research addresses the challenge of multi-class mental disorder diagnosis (using behavioral,
psychological metrics) while preserving the privacy of the data and providing post hoc explanations to a set of
humans. Error-prone samples were removed using deep autoencoder based global anomaly detection technique
that significantly improved data quality as reflected through multiple number of high-AUC machine learning mod-
els' performances over the 100,000 records datasets. For reliable mental disorder classification, the study uses an
extensive multi-model framework that integrates MLP, SVM, Random Forest, LightGBM, CatBoost, XGBoost,
KNN, Naive Bayes and a Stacking Ensemble. Out of all the models trained, MLP domains with the highest metrics
96.08% accuracy, 0.9608 macro-F1, MCC 0.9477 and Cohen’s Kappa 0.9477. Almost 5% of these patterns were
revealed by feeding the data into an anomaly detection system. Proposed system revealed enviably high-risk met-
rics using SHAP. In order to create an accurate and intelligible evaluation system, this work has accomplished
secure data preprocessing, anomaly filtering, multiclass mental disorder classification and SHAP explanation
based on the SHAP. In addition to providing direct psychological risk exposure, the suggested integrated model
ensures privacy protection, a high-quality single-cleaned sample and equitable predictive performance.

Keywords: Mental disorder, SHAP, data privacy, structured data, predictive analysis, big data,

healthcare
1 INTRODUCTION

Mental health disorders, which impact psychological well-being, cognitive functioning, emo-
tional stability and behavioral expression, have become a major global concern [1]. Early
detection of mental disorders has become a crucial research priority due to increased stress
levels, lifestyle imbalances, environmental pressures and restricted access to clinical profes-
sionals. Due to their heavy reliance on subjective evaluations and clinical interviews, con-
ventional diagnostic techniques are prone to bias, inconsistent results and intervention delays.
Because Al and ML can recognise subtle symptoms, learn complex behavioral patterns and
support scalable, data-driven decisions, their use in mental health diagnosis has increased
dramatically.

According to behavioral psychology, there is a strong correlation between underlying
mental disorders and emotions like sadness, euphoria, aggression, sleep disturbance, suicidal
thoughts, mood swings and cognitive indicators like overthinking, attention, concentration
and optimism. However, because of data imbalance, noise, subject variability and the sensi-
tive nature of psychological data, modelling these multi-dimensional behavioral indicators is
still difficult [2]. Anomalies, extreme outliers and privacy issues can impact traditional ma-
chine learning models, which can lower trust and limit their practicality [3,4].

The majority of current research relies on small datasets, binary classification and sin-
gle-model approaches that are unable to fully capture the complex, multifaceted nature of
psychological disorders, even though machine learning is increasingly being used in mental
health assessment [5,6]. In addition to ignoring feature-level behavioral and psychological
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indicators [7] that are essential for real-world diagnosis, current systems frequently lack ex-
plainability, making it challenging for clinicians to trust or interpret model decisions. Fur-
thermore, there is a dearth of scalable, generalizable models appropriate for multi-class diag-
nosis and a large gap in comparative evaluation across various algorithms using robust met-
rics. By combining a thorough multi-model framework, sophisticated explainability tech-
niques and multi-dimensional behavioral features, this project fills in these gaps and creates a
more accurate, comprehensible and clinically significant mental disorder diagnosis system.
The current study suggests a safe, privacy-preserving, anomaly-aware Al pipeline for multi-
class mental disorder diagnosis using behavioral and psychological indicators in order to ad-
dress these issues. The framework consists of:
o Differential Privacy (DP) to guarantee confidentiality and protection at the attribute
level.
e Autoencoder-based anomaly detection to remove anomalous behavioral samples with
severe reconstruction errors.
e Thorough machine learning benchmarking, encompassing MLP, SVM, LightGBM,
CatBoost, KNN, Naive Bayes, XGBoost and stacking.
e Explainable Al (XAl) utilising SHAP to interpret psychological risk factors influenc-
ing diagnostic results [8,9].
After processing a dataset of 100,000 behavioral records, about 5% of high-error anomalies
were found and eliminated. These results confirm that incorporating explainability, anomaly
reduction and privacy protection greatly increases the dependability and confidence of mental
health prediction systems.
All things considered, the suggested framework offers an Al system for early multi-class
mental disorder screening that is safe, comprehensible and clinically aligned. Large-scale
psychological surveys, clinical decision support systems and digital mental health platforms
could all benefit from its strong behavioral insights and high accuracy.

2 LITRAETURE REVIEW

In order to improve early psychological disorder detection, researchers are investigating deep
learning, natural language processing, behavioral modelling and biomedical signal analysis.
This has led to a significant increase in Al-driven mental-health analytics in recent years. A
hybrid CNN-LSTM framework for early adolescent depression detection was presented by
Zhang et al. [10] in 2024. Their model demonstrated the potential of multimodal deep neural
architectures for clinical early-warning systems by achieving highly competitive performance
with a 92% F1-score and 97% AUC using a large-scale dataset that included electronic health
records and neuroimaging data from over 50,000 teenagers.

Similar to this, Satapathy et al. [11] looked into a number of machine learning and deep
learning methods for categorising sleep disorders like narcolepsy, insomnia and sleep apnoea.
Using EEG-based temporal patterns, their study demonstrated the efficacy of deep spatio-
temporal feature extraction for neurophysiological signals, with CNN and RNN architectures
outperforming traditional ML algorithms. Hossain et al. [12] presented an automated facial-
expression monitoring system in a different 2024 study that combined quantum and classical
deep learning models. To monitor emotional fluctuations, the framework used both static
medical images and video streams. Their innovative five-stage fusion method, which com-
bined traditional and quantum-derived decision scores, improved emotion recognition accura-
cy, underscoring the growing significance of quantum-enhanced Al in mental health research.

Diwakar and Raj [13] created a DistilBERT-based classification model for text-based diag-
nostics that can recognise mental health conditions from written user content, such as autism,
anxiety and borderline personality disorder (BPD). Their model attained 96% accuracy using
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a balanced dataset with 500 samples per class. In keeping with an interdisciplinary trend in
mental-health analytics, the study also examined preliminary evidence connecting gut micro-
biota patterns to neuropsychological disorders. Peristeri et al. [14] expanded on behavioral
interpretation by introducing an Al-driven framework that uses XGBoost and NLP techniques
to use storytelling narratives to distinguish children with Autism Spectrum Disorder (ASD)
from neuro-typical children. There were 68 kids with ASD and 52 kids with typical develop-
ment in the dataset. Significant behavioral and linguistic divergences were found and gradient
boosting models successfully captured these differences.

Upadhyay et al. [15] also investigated behavioral data-driven prediction, using a stacking
ensemble of SVM classifiers for PDD early detection. Their demographic analysis highlight-
ed the socio behavioral aspects of disorder vulnerability by showing higher PDD prevalence
among middle-class students enrolled in non-technical academic programs and among rural
students across extreme income groups.

Lastly, the potential of a Dynamically Stabilised Recurrent Neural Network (DSRNN) for
improved feature extraction and diagnostic accuracy in mental-health classification tasks was
shown by Revathy et al. [16]. Their model demonstrated the significance of stability-aware
recurrent architectures for psychological data by capturing frequency-domain relationships
between healthy and affected individuals using the OSMI dataset.

3 SYSTEM METHODOLOGY

Secure-XAl Pipeline (Two-Section Flow Diagram)
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Figure. 1. System architecture

Evaluate Models:

Figure 1 shows combination of differential privacy, anomaly detection, multi-model machine
learning and SHAP-based explainability are all integrated into a single analysis pipeline in the
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proposed Secure-XAl Mental Disorder Diagnosis Framework. The following elements make
up the methodology: (1) Data privacy protection; (2) anomaly detection; (3) pre-processing;
(4) model development; (5) evaluation; and (6) explainability analysis. Every step guarantees
the accuracy, security and clinical interpretability of the finished diagnostic system.

3.1 Differential Privacy-Based Secure Data Transformation

Differential privacy (DP) is used prior to any machine learning computation to guarantee the
confidentiality of behavioral and psychological indicators. By introducing controlled statisti-
cal noise, DP safeguards the dataset so that the output is unaffected by the presence or ab-
sence of any one person.

Given a query function f(D)f(D)f(D) on dataset DDD, the Laplace Mechanism adds noise
sampled from:

Af)

€

Lap (
where: - Af = sensitivity of the query - e = privacy budget (smaller = more privacy) The pri-
vatized output becomes:

£1(0)=£0) + Lap (L)

€
3.2 Autoencoder-Based Anomaly Detection

To eliminate corrupted, missing, or psychologically inconsistent samples, an autoencoder
performs unsupervised anomaly detection.

An autoencoder consists of an encoder E(-) and decoder D(-):

z=E(x), x=D(z)

Reconstruction error (RE) is computed as:
RE(x) =ll x — % I3
A threshold 7 is selected using:

T = {igg + 30ge

If:

RE(x) > 7 = sample is anomaly

# X_local: local numeric feature matrix

scaler = MinMaxScaler(); Xs = scaler.fit_transform(X_local)
autoenc = build_autoencoder(input_dim=Xs.shape[1])
autoenc.fit(Xs, Xs, epochs=E, batch_size=B)
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recon = autoenc.predict(Xs)

errors = mean((Xs - recon)”"2, axis=1)

thresh = percentile(errors, 95)

anomaly_mask = errors > thresh

# Option A: drop anomalies

X_clean = X_local[~anomaly_mask]

# Option B: mark anomalies and include as flagged

3.3 Data Cleaning

After anomaly removal, the dataset is cleaned by handling missing values, unifying categori-
cal encodings and fixing inconsistencies.

Normalization
Min—Max scaling is applied to bring psychological indicators to a comparable scale:

X = X — Xmin (1)

Xmax — Xmin

3.4 Models

Multilayer Perceptron (MLP)

Given an input feature vector x, MLP processes data through multiple hidden layers. Each
layer computes:

D = J(W(I)hﬂ—l) T+ bm)(l)

where: - w® and b are trainable weights and biases - ¢ is an activation function (ReLU,

tanh, sigmoid) For multi-class prediction, the output layer uses the softmax function:

e’k
Py = k|x) Zm(l)
j

MLP excels at learning multi-dimensional emotional, cognitive and behavioral interactions.

Support Vector Machine (SVM, RBF kernel)

The predicted class is the sign or the argmax over the final decision function, which is a
weighted sum of kernel evaluations between a test sample and a subset of training points
(support vectors) plus a bias term.

A linear classifier is defined by:

wlix+b=0(1)

The optimal margin is obtained by minimizing:

min| |w| |? subjectto y;(wTx; +b) = 1(1)

When behavioral patterns are nonlinear, kernel functions (RBF, polynomial) map inputs in-
to high-dimensional feature spaces:

K(xi- xj) = ‘p(xi) . ¢(xj)(1)

SV M is effective for well-separated emotional and cognitive clusters.
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k-Nearest Neighbors (KNN)

KNN is a non-parametric classifier that bases its predictions on the feature space's local
neighborhoods. After preprocessing, find the distance between a test point xxx and each
training point using the Euclidean distance. Find the training samples that are kkk closest,
where kkk is a small integer like 7. The most common class among these closest neighbours
is selected as the predicted class; votes may be weighted by inverse distance. K-Nearest
Neighbours (KNN): KNN uses neighboring behavioral profiles to classify a sample. The
separation between samples is:

d(x,xi)z\]m(l)
;

The predicted class is:

¥ = mode(y;: x; € k — nearest neighbors)(1)

KNN is simple and useful for baseline comparison.

LightGBM (gradient boosting decision trees)

LightGBM achieves high accuracy at comparatively low computational cost by using regular-
ization, leaf-wise tree growth with depth constraints and histogram-based algorithms.
LightGBM uses histogram-based binning of behavioral variables to effectively handle the
high-dimensional and moderately large dataset. It automatically ignores weak or redundant
features while identifying the most important psychological thresholds (such as extreme stress
> 0.75).

LightGBM's leaf-wise growth learns accurate risk splits because the dataset includes both
numerical and categorical mental health indicators. Fine-grained transitions between mild,
moderate and severe psychological states are well captured by the model. LightGBM com-
bines histogram-based splitting with leaf-wise gradient boosting. The model reduces the goal.

L=) 1)+ ) (M)
i t

with gradients:

_al b= 221 (1)
ey T oy

This enables fast, memory-efficient training on large behavioral datasets with many fea-
tures.
XGBoost

Another gradient boosting decision tree algorithm that builds a series of trees to maximise a
regularised objective function is called XGBoost. In order to discourage excessively complex
trees, the objective combines the training loss (such as multi class log loss) with a penalty
term that is dependent on the number of leaves and the squared leaf weights. In order to
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achieve quick and precise learning, XGBoost uses a second order Taylor expansion to ap-
proximate the change in the objective at each boosting step and selects tree structures and leaf
values that maximise this improvement. In the multiclass setting, a softmax function is ap-
plied to the final prediction, which is once more an additive sum of all tree outputs. To identi-
fy subtle non-linear risk patterns in the dataset, XGBoost employs second-order optimisation.
Precise splits in decision trees are defined by features like emotional consistency, stress index
and cognitive impairment score.

Over fitting on psychological variables with inherent noise or sampling variability is pre-
vented by its regularization. When there are significant interactions between symptoms in the
dataset (such as stress x sleep disruption), XGBoost performs well. XGBoost uses regular-
ized optimization to improve boosting performance. The goal function is:

0bj = Y 1005+ ) 0 (FI(D)
i k
with:
A 2
2 =T +5 ) w? ()
j_

XGBoost evaluates tree splits using gain:

1( G? G2 G2

Gain = = -
an Ho+7 H.+4 H+1

2 )—'y(l)

This method is highly effective for discovering subtle psychological patterns.

CatBoost

CatBoost is a gradient boosting algorithm on decision trees that works well with categorical
features. Categorical variables are encoded using ordered target statistics and target leakage
is decreased through a "ordered boosting™ process that mimics incremental training on data
permutations. The model creates an ensemble of trees, much like other gradient boosters. At
each iteration, the tree is fitted to the negative gradient of the loss function with respect to the
current predictions and predictions are updated by adding a scaled version of the tree output.
Your dataset contains continuous psychological features, categorical self-assessment fields
and ordinal levels (mild — moderate — severe).

These are automatically encoded by CatBoost without target leakage, enabling more reliable
predictions.

Complex feature interactions like "high stress + low social support + irregular sleep — high-
risk class" are modelled.

Even in cases where the dataset includes correlated psychological indicators, its ordered
boosting technique minimizes overfitting. Mood categories, cognitive types and behavioral

labels are examples of categorical psychological characteristics that CatBoost is optimized
for. The prediction of its model is:

FG) = ) ne fiCO(D)
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where f;(x) are decision trees and »; is the learning rate. Ordered Boosting avoids target
leakage and improves generalization on small psychology datasets.

Stacking ensemble

To take advantage of their complementary strengths, the stacking ensemble integrates diverse
base learners into a single meta model. LightGBM, XGBoost and CatBoost function as base
classifiers in this framework; each generates class probability outputs for the training data via
cross validation. A new feature matrix is created by stacking these base predictions, with
each column representing the predicted probability for a particular class from a single base
learner.

Next, using a softmax transformation for multi-class predictions, a logistic regression model
is trained as the meta classifier on this stacked representation, learning optimal weights that
map base model outputs to final class probabilities see. During inference time, a test sample
is run through each of the three base models to produce probability features. These features
are then fed into the logistic regression meta model to determine the final diagnosis.

4 RESULT AND ANALYSIS

4.1 Anamoly Detection

An Al-driven anomaly detection module was implemented using an unsupervised Autoen-
coder architecture to guarantee the dependability of psychological and behavioral indicators
used for multi-class mental disorder classification. This module finds samples that are erratic,
noisy, or statistically inconsistent, which could impair the performance of downstream mod-
els or skew prediction results. All numerical features that represent psychological traits, such
as mood swings, euphoric shifts, exhaustion, suicidal thoughts, nervous breakdown tenden-
cies, authority respect, optimism, concentration and others, are first isolated in the anomaly
detection pipeline. In order to limit the feature space within a consistent range and increase
the stability of neural network training, these variables were normalised using MinMax scal-
ing. Next, a symmetrical autoencoder was built with a mirrored decoder structure, a com-
pressed 16-neuron latent representation and a 32-neuron ReLU encoding layer. The model
was able to learn the intrinsic distribution of typical behavioral patterns after the Autoencoder
was trained for eight epochs using mean squared reconstruction loss. Anomaly Detection
Summary:

Total Rows: 100000

Total Anomalies Detected: 5000

Remaining Clean Rows: 95000

Anomaly Threshold (95th percentile): 0.005874903392139847

All input samples were reconstructed by the model following training and reconstruction er-
rors were calculated as the mean squared difference between the original and reconstructed
vectors. Samples with behavioral patterns that significantly depart from the learnt distribu-
tion are associated with higher reconstruction errors, suggesting statistical anomalies or pos-
sible data corruption. To ensure that only the most unusual 5% of records were marked as
anomalies, a dynamic threshold based on the 95th percentile of reconstruction errors was cho-
sen. After classifying each sample as normal or abnormal, anomaly tags were added to the
dataset for auditability. Out of 100,000 rows, the system identified 5,000 anomalous samples,
leaving 95,000 high-quality records for safe model training and assessment. The boundary
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beyond which reconstruction deviations were statistically significant was identified as the
anomaly threshold, which was automatically calculated to be 0.00587. Extreme behavioral
fluctuations with abnormally high or low values across multiple indicators were seen in a
number of anomalous records. One anomaly, for instance, showed abnormally high devia-
tions in variables like sleep disorder (68.71), mood swing (-65.46), suicidal thoughts (26.76)
and aggressive response (-13.34). This led to a reconstruction error of 0.00657, which was
well over the threshold. The distribution of psychological characteristics would be distorted
and the classification model might be misled if these aberrant patterns were kept in the da-
taset. By incorporating this anomaly detection framework, the diagnostic system's overall
robustness is increased, noise is reduced and dataset security is significantly improved. The
final "secure dataset" is made more representative, consistent and appropriate for training
explainable machine learning models by eliminating extreme or corrupted psychological rec-
ords. This stage improves accuracy and clinical reliability by ensuring that the downstream
classification results represent real behavioral patterns rather than artefacts or incorrect inputs.

4.2 Behavioral Analysis

To comprehend how psychological indicators differ among various mental-health classes, a
thorough behavioral analysis was carried out. Class 0, Class 1 and Class 2 radar plots show
unique psychological signatures that reflect the type and severity of the underlying mental
health conditions. Class 0, which denotes comparatively stable or mild behavioral conditions,
exhibits balanced psychological traits with relatively low intensity across indicators, includ-
ing fatigue, suicidal thoughts and nervous breakdown tendencies. The Class O profile shows
adaptive coping strategies and general psychological resilience, as evidenced by higher opti-
mism, better focus and healthier emotional regulation. Figure 2 has shown analysis of behav-
ioral condition.

Psychological Indicator Pr

/i 4 [t oy
T stV "
\/ R i \) N\ ?
L \) & /\/ 25
N 7 e \
<

Figure. 2. Behavioral Analysis based on features

Class 1, on the other hand, displays somewhat increased behavioral swings, especially in
mood swings, fatigue, euphoric emotion shifts and overthinking. These people exhibit signif-
icant emotional instability and cognitive load, but the indicators stay within the mid-range
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intensity range, indicating early-to-moderate psychological disruption. In this group, charac-
teristics like decreased focus, increased susceptibility to nervous breakdowns, diminished
respect for authority and increased aggression become more prevalent. This group most like-
ly includes people with newly developing mental health issues whose behavioral symptoms
are starting to manifest regularly but have not yet reached severe proportions.

With sharp peaks in suicidal thoughts, fatigue and nervous breakdown tendencies, Class 2
exhibits the strongest deviation. The radar plot shows severe cognitive dysregulation, as evi-
denced by poor concentration and noticeable overthinking, as well as markedly elevated eu-
phoria fluctuations and high levels of aggressive response. Emotional and cognitive domains
are severely affected, as evidenced by the high intensities of sleep disorders and mood insta-
bility. It's interesting to note that Class 2 also exhibits diminished capacity in actions like
owning up to errors or offering helpful explanations, which suggests compromised social
cognition and emotional processing. This class is closer to severe or high-risk mental health
conditions due to the overall behavioral pattern, which reflects acute psychological distress
and elevated symptoms.

These findings are further corroborated by the behavioral correlation heatmap, which
shows robust associations between particular psychological characteristics. Mood swing
plays a crucial role in emotional dysregulation, as evidenced by its moderate to strong corre-
lations with feelings of exhaustion, sleep disorders, nervous breakdown tendencies and
overthinking. Overthinking, which reflects cognitive overload and decreased social adapta-
bility in higher-risk classes, has a negative correlation with optimism and respect for authori-
ty. Exhaustion, nervous breakdown and anorexia are positively correlated with suicidal
thoughts, indicating that in severe cases, physiological dysregulation and emotional break-
down co-occur. On the other hand, indicators like sadness, sexual activity and admitting mis-
takes show weak correlations with the majority of variables, suggesting limited predictive
relevance within this population.

When taken as a whole, these behavioral insights demonstrate unequivocally that people's

psychological patterns become more dysregulated in emotional, cognitive and social domains
as they move from Class 0 to Class 2. In addition to validating the model's predictions, the
radar plots and correlation analysis show significant psychological signatures that correspond
with actual mental health symptomatology. The proposed Secure-XAl diagnostic framework
relies heavily on these findings to establish clinical interpretability and explain classification
outcomes.
Eight machine learning models were tested for robustness in multi-class mental disorder di-
agnosis using the secured, anomaly-filtered and differentially private dataset. All quantitative
metrics, such as Accuracy, Precision (Macro), Recall (Macro), F1-score (Macro), Cohen's
Kappa, MCC, Balanced Accuracy, Hamming Loss and Log Loss, are compiled in Table 1 and
2. Owverall, it is evident from the results that deep neural architectures perform better in this
behavioral-feature-based classification problem than traditional machine learning models.

4.3 Predictive Analysis

The confusion matrices of the four best-performing models Stacking, SVM, LightGBM and
MLP were used to further analyse the effectiveness of the suggested Secure-XAl mental dis-
order classification system. The accuracy with which each model differentiates between the
four mental-health classes is evident from these matrices. With high true-positive rates for
Class 0 and Class 3, the Stacking model generally shows balanced recognition across all cate-
gories. Nonetheless, there is a moderate amount of confusion between adjacent psychological
states, suggesting that while the ensemble captures general behavioral patterns, it is a little
less accurate in distinguishing borderline cases. The margin-based structure that divides
moderately distinct behavioral clusters like anxiety, stress and controlled mood fluctuations is
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consistent with the SVM model's extremely dependable performance for Classes 1 and 2.
However, there are still some overlaps between Class 0 and Class 3, where symptoms like
emotional irregularities and sleep disturbance are partially shared. LightGBM learns thresh-
old-driven psychological patterns to produce consistent and reliable predictions in every class.
There is some misclassification between classes with similar cognitive traits or slight emo-
tional swings despite strong diagonal accuracy. With the greatest number of accurate predic-
tions for each class and the fewest cross-class errors, the MLP exhibits better classification
ability than these models. This performance demonstrates how well the MLP models intri-
cate, nonlinear relationships between psychological traits like focus, mood swings, irregular
sleep patterns and overanalysing tendencies.
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Figure. 3. Confusion Matrix

Table 1. Results summary

Model Accuracy Precision Recall F1

MLP 0.9608 0.960829 0.960797 0.960777
Stacking 0.9227 0.922816 0.922698 0.922684
SVM 0.9201 0.920224 0.920095 0.920051
LightGBM 0.919 0.919281 0.918997 0.918954
XGBoost 0.90865 0.909084 0.908647 0.90861
CatBoost 0.88915 0.889788 0.889146 0.889053
KNN 0.88705 0.888715 0.887051 0.887052
NaiveBayes 0.6769 0.680309 0.676907 0.676989

With an accuracy of 96.08%, an F1-Macro of 0.9607 and the strongest agreement metrics
(Cohen's Kappa = 0.9477, MCC = 0.9477), the Multi-Layer Perceptron (MLP) outperformed
all other metrics. This shows that a deep neural representation best captures the non-linear
relationships present in behavioral indicators like mood-swing patterns, the severity of sleep-
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ing disorders, suicidal ideation, overthinking and concentration levels. Even after privacy-
preserving noise injection and anomaly removal, the model's high prediction confidence and
stability are demonstrated by the low Hamming Loss (0.0392) and minimal Log Loss
(0.1866). With an accuracy of 92.27%, the Stacking Ensemble, which successfully combined
the predictive capabilities of LightGBM, XGBoost and CatBoost, was the second-best per-
former. When learning from high-dimensional psychological behaviour features, its perfor-
mance improvement over individual ensemble models confirm the advantage of model diver-
sity.

Strong generalisation is further supported by the high Kappa (0.8969) and MCC (0.8969).
The competitive performance of classical models like SVM (92.01% accuracy) and
LightGBM (91.9% accuracy) suggests that margin-based and gradient-boosting methods can
still identify significant structure in mental health indicators. However, when compared to
the MLP, their marginally lower F1-Macro values indicate a limited capacity to capture deep-
er non-linear behavioral patterns. Although they performed fairly well, boosting models like
XGBoost (90.86%) and CatBoost (88.91%) were more susceptible to differential privacy
noise, which caused slight distortions in feature distributions. Higher Log Loss values
(0.2838 and 0.3605, respectively) demonstrate this sensitivity.

Table 2. Evaluation parameters

Model Cohen Kap- MCC Balanced Ac- Hamming Log Loss
pa curacy Loss

MLP 0.947733 0.947757 0.960797 0.0392 0.18661
Stacking 0.896933 0.89698 0.922698 0.0773 0.254027
SVM 0.893467 0.893537 0.920095 0.0799 0.257038
LightGBM 0.892 0.89212 0.918997 0.081 0.250204
XGBoost 0.8782 0.878366 0.908647 0.09135 0.283842
CatBoost 0.8522 0.852471 0.889146 0.11085 0.36052
KNN 0.8494 0.849913 0.887051 0.11295 0.851431
Na- 0.569204 0.570122 0.676907 0.3231 0.840418
iveBayes

Due to the high dimensionality and noise in behavioral features, which reduce discriminative
power under Euclidean distance, traditional distance-based models such as KNN (88.7% ac-
curacy) performed worse. In this behavioral-psychological dataset, where inter-feature corre-
lations (e.g., Sadness + Overthinking, Sleep Disorder + Exhaustion) are significant, Naive
Bayes produced the weakest results (67.69% accuracy), demonstrating that the strong feature
independence assumptions do not hold.
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Overall, the findings point to three important conclusions:

1. The best models for simulating intricate, non-linear mental health patterns are deep neu-
ral models (MLP).

2. While ensemble and margin-based models perform consistently, they are sensitive to
noise that protects privacy.

3. Distance-based and probabilistic models have trouble with behavioral correlations,
which lowers their accuracy.

These results demonstrate that strong predictive performance can be maintained even after
applying differential privacy, Al-based anomaly detection and encryption-driven prepro-
cessing, confirming the efficacy of the proposed Secure-XAl Mental Health Framework.
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Optimisim

Suicidal thoughts
Nervous Break-down
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Exhausted

Sleep dissorder
Authority Respect
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mean(|SHAP value|) (average impact on model output magnitude

Figure 4. SHAP Analysis

SHAP explainability analysis was used to determine the most significant behavioral and cog-
nitive characteristics influencing model predictions in order to supplement the quantitative
assessment. According to the SHAP feature-importance shown in figure 4 and describe fac-
tors that significantly influence class outcomes include focus, mood swings, euphoric epi-
sodes, optimism, suicidal thoughts, nervous breakdown tendencies, sleep disorders, respect
for authority and overthinking. For example, stable optimism and controlled emotional be-
haviour are strong indicators of normal or mild conditions, whereas poor concentration and
elevated mood swings significantly increase the likelihood of belonging to high-risk mental-
health classes.

While characteristics like overthinking, behavioral withdrawal and sleep disorder affect
multiple severity levels depending on their intensity, suicidal tendencies and breakdown
symptoms significantly shift predictions towards the most severe class. On the other hand,
characteristics like sexual activity, depression, admit-mistake behaviour, anorexia and aggres-
sive reactions make very little contribution to the prediction process, indicating that there is
either less variance or a weaker correlation with mental-health labels in this dataset. Overall,
the suggested framework successfully strikes a balance between accuracy, feature transparen-
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cy and clinical relevance when confusion-matrix evaluation and SHAP interpretability are
combined. This makes it appropriate for practical mental health screening applications where
reliability and interpretability are crucial.

5 CONCLUSION

Using behavioral and psychological indicators, this study offers a thorough Secure-XAl
framework for accurate and comprehensible diagnosis of mental disorders. This research
work's main goal was to create an explainable multi-model learning pipeline and a secure,
high-quality dataset that could capture intricate mental health patterns with improved clinical
reliability. In order to accomplish this, the suggested system incorporated differential privacy
to safeguard sensitive psychological characteristics. This was followed by an anomaly detec-
tion mechanism based on autoencoders that effectively detected and eliminated extreme or
tainted behavioral records.

This achieved the objective of creating a reliable preprocessing infrastructure by guaran-
teeing that the final dataset used for modelling was statistically stable, noise-free and resistant
to privacy leakage. A variety of traditional and cutting-edge machine-learning algorithms,
such as MLP, SVM, Random Forest, LightGBM, CatBoost, XGBoost, Naive Bayes, KNN
and Stacking Ensemble were evaluated in order to achieve the second goal of building a
strong multi-model learning framework. Together, these models were able to accurately iden-
tify mental disorder categories by capturing linear, non-linear, hierarchical and interaction-
based psychological relationships. The goal of attaining high diagnostic accuracy and robust-
ness was directly supported by the integration of ensemble approaches, which further en-
hanced stability and generalization across heterogeneous behavioral patterns.

Lastly, the study used SHAP-based explainability to address the important goal of inter-
pretability. This made it possible to quantify feature contributions precisely, identify domi-
nant psychological risk factors and comprehend the ways in which various characteristics
such as mood swings, sleep irregularities, impulsivity, emotional breakdown tendencies, au-
thority-response behavior, concentration levels and optimism gradients affect diagnostic out-
comes. The system is not a "black box," but rather a reliable decision-support tool that can
help mental health professionals with evidence-based assessments thanks to its transparent
and clinically interpretable outputs.
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